E.M.G. YADAVA WOMEN'S COLLEGE, MADURAI – 625 014.

(An Autonomous Institution – Affiliated to Madurai Kamaraj University)
Re-accredited (3rd Cycle) with Grade A+ & CGPA 3.51 by NAAC

DEPARTMENT OF MATHEMATICS

CBCS with **OBE**

MASTER OF SCIENCE

PROGRAMME CODE - OPM

COURSE STRUCTURE

(w.e.f. 2022 - 2023 Batch onwards)

E.M.G. YADAVA WOMEN'S COLLEGE, MADURAI – 625 014.

(An Autonomous Institution – Affiliated to Madurai Kamaraj University)
Re-accredited (3rd Cycle) with Grade A+ & CGPA 3.51 by NAAC

CRITERION - I

1.1.3 Details of courses offered by the institution that focus on employability / entrepreneurship / skill development during the year.

Syllabus copies with highlights of contents focusing on Employability / Entrepreneurship / Skill Development

To be Noted:

HIGHLIGHTED COLORS	COURSES		
	Employability		
	Skill Development		
	Entrepreneurship		
	Skilled & Employability		

E.M.G.YADAVA WOMEN'S COLLEGE, MADURAI-14.

(An Autonomous Institution – Affiliated to Madurai Kamaraj University) Re-accredited (3 $^{\rm rd}$ Cycle) with Grade A $^+$ and CGPA 3.51 by NAAC

CBCS with OBE DEPARTMENT OF MATHEMATICS- PG

(w.e.f. 2022 - 2023 Batch onwards)

VISION

To mold the students to have strong Mathematical and Analytical skills to meet the challenges open to them.

MISSION

To provide the students with a strong Mathematical Foundation through courses which cater to the needs of Industry, Research and Higher Education

Programme Educational Objectives (PEOs) M.Sc..

PEO	On completion of the Programme, the student will be able to
PEO1	Apply their knowledge in modern industry or teaching, or secure acceptance in high quality graduate programs in mathematics.
PEO2	Keep on discovering new avenues in the chosen field and exploring areas that remain conducive for research and development.
PEO3	Promote the culture of interdisciplinary research among all disciplines and Applied Mathematics.
PEO4	Strengthen in logical and analytical ability by knowing the Knowledge of Mathematics
PEO5	Handle the problems faced by industry through Mathematical knowledge and scientific computational techniques
PEO6	To develop teaching skills, subject knowledge in the course of their study which will help them to shine in various field including Education ,IT etc.,

Programme Outcomes (POs) with Graduate Attributes

PO	Graduate Attributes	On completion of the Programme, the student will be able to
PO1	Knowledge Base	Equipped with intense knowledge in their discipline.
PO2	Problem Analysis & Investigation	Develop specialized skills to plan, analyze and draw conclusions related to their respective field of study.
PO3	Communication Skills & Design	Assess and interpret complex situations which enables them to choose successful career in Education and Industry
PO4	Individual and Team Work	Undergo projects and research activities to develop knowledge and become expertise in their field of study.
PO5	Professionalism, Ethics and equity	Develop social and ethical responsibility in the transfer of knowledge.
PO6	Lifelong learning	Crack lectureship and fellowship exams approved by UGC like CSIR – NET and SET.

Programme Specific Outcomes (PSOs) with Graduate Attributes

PSO	Graduate Attributes	On completion of the Programme, the student will be able to
PSO1	Knowledge Base	Understand of the fundamental axioms in mathematics and capability of developing ideas based on them.
PSO 2	Problem Analysis & Investigation	Solve complex problems by critical understanding, analysis and synthesis
PSO 3	Communication Skills & Design	Provide knowledge of a wide range of mathematical techniques and application of mathematical methods
PSO 4	Individual and Team Work	Solving problems skills, thinking, creativity through assignments, project work
PSO 5	Professionalism, Ethics and equity	Broaden their professional foundations through activities such as internships, fellowships, teaching and project work.
PSO 6	Lifelong learning	Recognize the need to engage in lifelong learning through continuous education, and research leading to higher degrees like PhD, D.Sc., etc

Eligibility for Admission: Pass in B.Sc., Mathematics

Duration of the Course:

The students shall undergo prescribed courses of study for the period of two academic years under CBCS semester pattern with Outcome Based Education.

Medium of Instruction: English

System: Choice Based Credit System with Outcome Based Education.

Courses of Study with Credit Distribution

Category	No. of Courses	No. of Credits
Core	16	64
Discipline Specific	4	16
Elective Course		
Inter Disciplinary	2	4
Course		
Project	1	6
Total	23	90

Nature of the Course

Courses are classified according to the following nature

- 1. Knowledge & Skill
- 2. Employability Oriented
- 3. Entrepreneurship Oriented

Outcome Based Education (OBE) & Assessment

Students understanding must be built on and assessed for wide range of learning activities, which includes different approaches and are classified along several bases, such as

1. Based on purpose:

- Formative (Internal tests, Assignment, Seminar, Quiz, Documentation, Case lets, ICT based Assignment, Mini Projects administered during the learning process)
- Summative (Evaluation of students learning at the end of instructional unit)

2. Based on Domain knowledge: (Post Graduate Up to K5 Levels)

• Assessment through K1, K2,K3, K4 & K5

Evaluation

Continuous Internal Assessment Test (CIA) : 25 Marks
Summative Examination : 75 Marks
Total : 100 Marks

CIA-Continuous Internal Assessment: 25 Marks

Components	Marks
Test (Average of three tests)	
(Conduct for 150 marks and converted into 15 marks)	15
Assignment	5
Seminar	5
Total	25

- Centralized system of Internal Assessment Tests
- There will be a three Internal Assessment Tests
- Duration of Internal Assessment Test I will be 1 1/4 hours and Internal Assessment Test II and III will be 2 1/2 hours.
- Students shall write retest on the genuine grounds if they are absent in either Test I or Test II and Test III with the approval of Head of the Department.

Question Paper Pattern for Continuous Internal Assessment Test I

Section	Marks
A – Multiple Choice Questions (4x1 Mark)	4
B– Short Answer (3x2 Marks)	6
C – Either Or type (2/4 x 5 Marks)	10
D – Open Choice type (1/2 x10 Marks)	10
Total	30

Question Paper Pattern for Continuous Internal Assessment Test II and Test III

Section	Marks
A – Multiple Choice Questions (8x1Mark)	8
B – Short Answer (6 x 2 Marks)	12
C – Either Or type (4/8 x 5 Marks)	20
D – Open Choice type (2/4 x 10 Marks)	20
Total	60

Conducted for 150 marks and converted into 15 marks

Question Paper Pattern for Summative Examination

Section	Marks
A – Multiple Choice Questions without choice	10
(10x 1Mark)	
B – Short Answer Questions without choice (5 x 2 Marks)	10
C – Either Or type (5/10 X 5Marks)	25
D – Open Choice type(3out of 5 X 10Marks)	30
Total	75

• In respect of external examinations passing minimum is 45% for Post Graduate Courses and in total, aggregate of 50%.

Latest amendments and revisions as per UGC and TANSCHE Norms are taken into consideration in curriculum preparation.

Distribution of Marks in % with K levels CIAI, II, III & External Assessment

Blooms Taxonomy	Int	ernal Assessr	External	
	I	II	III	Assessment
Knowledge(K1)	8%	8%	8%	5%
Understanding(K2)	28%	12%	8%	14%
Apply(K3)	44%	40%	24%	27%
Analyze(K4)	20%	40%	40%	27%
Evaluate(K5)	-	-	20%	27%

BLUE PRINT FOR INTERNAL ASSESSMENT - I Articulation Mapping - K Levels with Course Learning Outcomes (CLOs)

			Secti	ion A	Sec	tion B	Section C	Section D			
Sl. No	cCOs	K- Level	MCQs (No Choice)		Short Answers (No Choice)		(Either or Type)	(Open Choice)	Total		
			No. of Questions	K- Level	No. of Questions	K- Level					
1	CLO 1	Up to K 4	2 2	K1 K2	1 1 1	K1 K2 K3	1(K2) 1(K3) (Each set of questions must be in the same level)	1(K3) 1(K4)			
	of Quest asked	ions to	4		3		4	2	13		
	No. of Questions to be answered				2	1	10				
	Marks for each question		1		2		5	10			
	Total Marks for		Total Marks for each section		4		6		20	20	50

BLUE PRINT FOR INTERNAL ASSESSMENT – II Articulation Mapping - K Levels with Course Learning Outcomes (CLOs)

			Secti	on A	Section	Section B		Section D	
SI. No	CLOs	K- Level	MCQs (No Choice)			Short Answers (No Choice)		(Open Choice)	Total
			No. of Questions	K- Level	No. of Questions	K- Level			
1	CLO 2	Up to K 4	2 2	K1 K2	1 2	K1 K2	1(K3) 1(K4)	1(K3) 1(K4)	
2	CLO 3	Up to K 4	2 2	K1 K2	1 2	K1 K2	1(K3) 1(K4) (Each set of questions must be in the same level)	1(K3) 1(K4)	
	. of Quest	ions to	8		6		8	4	26
No. of Questions to be answered		8		6		4	2	20	
Marks for each question		ch	1		2		5	10	
To	Total Marks for each section		8		12		40	40	100

BLUE PRINT FOR INTERNAL ASSESSMENT – III Articulation Mapping - K Levels with Course Learning Outcomes (CLOs)

SI. No	CLOs	K- Level	Section A MCQs (No Choice)		Section B Short Answers (No Choice)		Short Answers (No Choice)		Short Answers		Section C (Either or Type)	Section D (Open Choice)	Total
			No. of Questions	K- Level	No. of Questions	K- Level							
1	CLO 4	Up to	2	K1	1	K1	1(K3)	1(K4)					
		K5	2	K2	1	K2	1(K4)	1(K5)					
					1	K3							
2	CLO 5	Up to	2	K1	1	K1	1(K3)	1(K4)					
		K5	2	K2	1	K2	1(K4)	1(K5)					
					1	K3	(Each set						
							of						
							questions must be in						
							the same						
							level)						
							10 (01)						
	of Questic sked	ons to	8		6		8	4	26				
No.	of Questic	ons to	8		6		4	2	20				
	nswered												
Mar	Marks for each		1		2		5	10					
ques	question												
	Total Marks for each		8		12		40	40	100				
secti	ion												

Distribution of Marks with choice K Levels CIA I, CIA II and CIA III

CIA	K Levels	Section- A MCQ (No choice)	Section -B Short Answer (No choice)	Section- C (Either or Type)	Section-D (Open Choice)	Total Marks	% of Marks
I	K1	2	2			4	8
	K2	2	2	10	-	14	28
	K3		2	10	10	22	44
	K4				10	10	20
	Marks	4	6	20	20	50	100
	K1	4	4			8	8
II	K2	4	8			12	12
	K3			20	20	40	40
	K4			20	20	40	40
	Marks	8	12	40	40	100	100
	K1	4	4			8	8
***	K2	4	4			8	8
Ш	К3		4	20		24	24
	K4			20	20	40	40
	K5				20	20	20
	Marks	8	12	40	40	100	100

Articulation Mapping - K Levels with Course Learning Outcomes (CLOs) for Internal Assessment (IDC)

Sl. No	CLOs	K- Level	Section A MCQs (No choice)		Section B Short Answers (No choice)		Short Answers (No choice)		Section C (Either/or Type)	Section D (open choice)	Total
			No. of Question	K- Level	No. of Question	K- Level					
			S	Level	S	Level					
1	CLO 1	Up to K4	2	K1			2(K3&K3)	1(K3)			
2	CLO 2	Up to K4	2	K1			2(K3&K3	1(K4)			
3	CLO 3	Up to K4			1	K2	2 (K4&K4)	1(K4)			
4	CLO 4	Up to K5			1	K2	2 (K5&K5)	1(K5)			
5	CLO 5	Up to K5			1	K2		1(K5)			
No ask	-	ions to be	4		3		8	5	20		
	No. of Questions to be answered		4		3		4	2	13		
Ma	Marks for each question		1		2		5	10			
	tal Marks tion	for each	4		6		20	20	50 (Marks)		

Distribution of Section-wise Marks with K Levels for Internal Assessment (IDC)

K Levels	Section A (MCQ'S) (No choice)	Section B (Short Answer) (No choice)	Section C (Either or Type)	Section D (Open Choice)	Total Marks	% of Marks
K1	4				4	4
K2		6			6	6
K3			20	10	30	30
K4			10	20	30	30
K5			10	20	30	30
Total Marks	4	6	40	50	100	

- K1- Remembering and recalling facts with specific answers.
- K2- Basic understanding of facts and stating main ideas with general answers.
- K3- Application oriented- Solving Problems, Justifying the statement and deriving Inferences.
- K4- Examining, analyzing, presentation and make inferences with evidences.
- K5- Evaluating, making Judgments based on criteria

Articulation Mapping - K Levels with Course Learning Outcomes (CLOs) for External Assessment

Sl. No	CLOs	K- Level	Section MC (No ch	Qs	Section B Short Answers (No choice)		Section C (Either/or Type)	Section D (open choice)	Total
			No. of Question	K- Level	No. of Question	K- Level			
			S	Level	S	Level			
1	CLO 1	Up to K4	2	K1&K2	1	K1	2 (K2& K2)	1(K3)	
2	CLO 2	Up to K4	2	K1&K2	1	K2	2(K3& K3)	1(K4)	
3	CLO 3	Up to K4	2	K1&K2	1	K3	2 (K3 &K3)	1(K4)	
4	CLO 4	Up to K5	2	K1&K2	1	K4	2 (K4 & K4)	1(K5)	
5	CLO 5	Up to K5	2	K1&K2	1	K5	2 (K5 & K5)	1(K5)	
No ask	-	ions to be	10		5		10	5	30
	No. of Questions to be answered		10		5		5	3	23
Ma	Marks for each question		1		2		5	10	
	tal Marks tion	for each	10		10		25	30	75 (Marks)

Distribution of Section-wise Marks with K Levels for External Assessment

K Levels	Section A (MCQ'S) (No choice)	Section B (Short Answer) (No choice)	Section C (Either or Type)	Section D (Open Choice)	Total Marks	% of Marks
K1	5	2	-	-	7	5
K2	5	2	10	-	17	14
K3	-	2	20	10	32	27
K4	-	2	10	20	32	27
K5	-	2	10	20	32	27
Total Marks	10	10	50	50	120	100

- K1- Remembering and recalling facts with specific answers.
- K2- Basic understanding of facts and stating main ideas with general answers.
- K3- Application oriented- Solving Problems, Justifying the statement and deriving Inferences.
- K4- Examining, analyzing, presentation and make inferences with evidences.
- K5- Evaluating, making Judgments based on criteria

E.M.G.YADAVA WOMEN'S COLLEGE, MADURAI-14.

(An Autonomous Institution – Affiliated to Madurai Kamaraj University) Re-accredited (3^{rd} Cycle) with Grade A^+ and CGPA 3.51 by NAAC

CBCS with **OBE**

DEPARTMENT OF MATHEMATICS-PG

(w.e.f. 2022 – 2023 Batch onwards)

COURSE STRUCTURE -SEMESTER WISE

Sem	Category	Course Code	Title of the Course	Teaching hrs(per Week)	Exam Duration (Hrs.)		Mar	ks Allotte	ed
						CIA	SE	Total	Credits
	Core	22OPMA11	Abstract Algebra	5	3	25	75	100	4
	Core	22OPMA12	Real Analysis	5	3	25	75	100	4
I	Core	22OPMA13	Differential Equations	6	3	25	75	100	4
	Core	22OPMA14	Differential Geometry	6	3	25	75	100	4
			DSEC-I	6	3	25	75	100	4
	IDC	(22OPMAID1	Teaching & Research Aptitude Paper –I	2	3	25	75	100	2
	Core	22OPMA21	Linear Algebra	5	3	25	75	100	4
II	Core	22OPMA22	Measure and Integration	5	3	25	75	100	4
	Core	22OPMA23	Graph Theory with Applications	6	3	25	75	100	4
	Core	22OPMA24	Advanced Statistics-1	6	3	25	75	100	4
			DSEC-II	6	3	25	75	100	4
	IDC	22OPMAID2	Teaching & Research Aptitude Paper -II	2	3	25	75	100	2
	Core	22OPMA31	Advanced Statistics-II	6	3	25	75	100	4
	Core	22OPMA32	Complex Analysis	6	3	25	75	100	4
III	Core	22OPMA33	Mechanics	6	3	25	75	100	4
	Core	22OPMA34	Topology	6	3	25	75	100	4
			DSEC-III	6	3	25	75	100	4
	Core	22OPMA41	Advanced Topology	6	3	25	75	100	4
IV	Core	22OPMA42	Research Methodology & Mathematical Methods	6	3	25	75	100	4
_ •	Core	22OPMA43	Functional Analysis	6	3	25	75	100	4
	Core	22OPMA44	Operations Research	6	3	25	75	100	4
			DSEC-IV	6	3	25	75	100	4
		22OPMAPR4	Project			20	80		6
	1	1	Total Credits			1	1	1	90

DSEC- Discipline Specific Elective Course

IDC- Inter Disciplinary Course

DSEC: Discipline Specific Elective Courses:

DSEC – I has to be chosen in Semester I from the following:

- 1. Number Theory& Cryptography 22OPMADSE1A
- 2. Fluid Dynamics 22OPMADSE1B

DSEC – II has to be chosen in semester II from the following:

- 1. Fuzzy Sets and Logic -22OPMADSE2A
- 2. Automata Theory and Formal Languages -22OPMADSE2B

DSEC – III has to be chosen in semester III from the following:

- 1. Numerical Analysis -22OPMADSE3A
- 2. Stochastic Process -22OPMADSE3B

DSEC –IV has to be chosen in semester IV from the following:

- 1. Discrete Mathematics 22OPMADSE4A
- 2. Financial Mathematics 22OPMADSE4B

Annexure -1

	Department of Mathematics					I M.Sc	••			
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total		
					Hours/week					
1	Core	22OPMA11	Abstract Algebra	4	5	25	75	100		

Nature of the Course						
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented				

Course Objectives

- 1. To develop working knowledge of group and ring theory and skill for applying to construct certain field.
- 2. To acquire knowledge of polynomial Rings
- 3. To learn deep concepts in algebra such as splitting field, normal and separable extensions.
- 4. To understand Galois Theory
- 5. To know about solvability by radicals

Unit	Course Content	75 Hours	K Level	CLO
I	Group Theory: Another Counting Principle – Sylow's Theorems.	15	Up to K4	CLO 1
II	Continuation of Group Theory and Ring Theory: Direct Products – Finite Abelian Groups - Polynomial Rings	15	Up to K4	CLO 2
III	Continuation of Ring Theory and Fields: Polynomials over the Rational Fields - Extension Fields - Roots of Polynomials.	15	Up to K4	CLO 3
IV	Continuation of Fields: More About Roots -The Elements of Galois Theory	15	Up to K5	CLO 4
V	Continuation of Fields and Selected Topics Solvability by Radicals – Galois Groups over the Rationales -Finite Fields	15	Up to K5	CLO 5

Book for study:

I.N. Herstein, *Topics in Algebra*, 2nd Edition, John Wiley and Sons, NewYork1975.

UNIT	CHAPTER(S)	SECTIONS		
I	2	2.11 & 2.12		
II	2 & 3	2.13,2.14 & 3.9		
III	3&5	3.10,5.1 & 5.3		
IV	5	5.5 & 5.6		
V	5&7	5.7,5.8& 7.1		

Books for Reference:

- 1. S. Lang, *Algebra*, 3rd Edition, Addison-Wesley, Mass, 1993.
- 2. John B. Fraleigh, A First Course in Abstract Algebra, Addison Wesley, Mass, 1982.
- 3. Surjeet Singh, Qazi Zameeruddin Mordern Algebra 8thEdc, 2008.
- 4. N.S.Gopalakrishnan, *University Algrbra*1stedition, 2009.
- 5. Michael Artin, *Algebra*2ndedition, 2011

Web Resources:

- 1. http://math.uchicago.edu/~may/REU2016/REUPapers/Idelhaj.pdf
- 2. http://torus.math.uiuc.edu/jms/m317/handouts/finabel.pdf
- 3. http://www.math.brown.edu/dabramov/MA/f1314/251/Zijian-notes.pdf

E-Books:

Pedagogy:

Chalk and Talk, Power point presentations, Group Discussions, Quiz, Assignment and Seminar.

Rationale for nature of Course:

Knowledge and Skill:

- Acquaintance with the fundamental algebraic structures, namely group, rings and fields, essential for further study of algebra.
- Skill to apply in modern mathematics and other fields.

Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussion and other practical works and also insist them to check the Books for References and web resources.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

CLO	Course Learning Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CLO1	Analyze counting principle and sylow's theorem and apply them for describing structures of finite groups	Up to K4
CLO2	Describe polynomial rings and other forms of polynomial rings	Up to K4
CLO3	Derive and apply Guass lemma and Eisentein criterion for irreducibility of polynomials	Up to K4
CLO4	Learn fundamental theorem of Galois theory and related results	Up to K5
CLO5	Understand solvability by radicals and know the application of Galois theory	Up to K5

- K1- Remembering facts with specific answers
- K2- Basic understanding of facts.
- K3- Application oriented -Solving Problems
- K4- Analyzing, examining and making presentations with evidence
- K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	3	1	2	1	3
CLO2	3	2	2	2	1	3
CLO3	3	2	2	2	2	3
CLO4	3	2	2	2	2	3
CLO5	3	3	1	2	2	3

1-Basic Level 2- Intermediate Level 3.AdvancedLevel

Lesson Plan

Unit	Course Content	75 H	Iours	Mode of Teaching
1	Another Counting Principle – 1st, 2nd and 3rd parts of Sylow's Theorems Double Coset – the normalizer of a group.	9 6	15	Chalk & Talk
II	External and Internal direct Products – structure theorem for finite abelian groups Non isomorphic abelian groups - polynomial rings.	8 7	15	Chalk & Talk
III	Polynomials over rational fields – the Eisenstein criterion extension fields – roots of polynomials – splitting fields	7 8	15	PowerPoint Presentation & Seminar
IV	More about roots – simple extension – separable extension fixed fields – symmetric rational functions – normal extension Galois group – fundamental theorem of Galois theory	6 5 4	15	PowerPoint Presentation, Seminar Assignment
V	Solvable group – the commutator subgroup – Solvability by radicals Finite fields.	9	15	PowerPoint Presentation & Seminar
	Total Hours		75	

Course Designer: Mrs. S. Selvi, Assistant Professor of Mathematics

Department of Mathematics				I M.Sc.,				
Sem	Category	Course Code	Course	Credits	Contact	CIA	SE	Total
			Title		Hours/week			
1	Core	22OPMA12	Real	4	5	25	75	100
			Analysis					

Nature of the Course					
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented			

Course Objectives

- 1. To introduce the fundamental of Mathematical Analysis
- 2. To Understand the concepts of continuity, differentiability and integrability.
- 3. To study the new concept of Riemann Stieljes integral
- 4 Apply the techniques of Power series.
- 5. To know about the primitive mapping

Unit	Course Content	75 Hours	K Level	CLO
1	The derivative of a real function: Mean Value Theorem - The continuity of derivatives – L' Hospital's Rule - Taylor's Theorem- Differentiation of vector –valued functions.	15	Up toK34	CLO1
11	The Riemann-Stieltjes integral: Definition and Existence of the Integral - Properties of the Integral. Integration and differentiation - Integration of vector- valued functions - Rectifiable curves	15	Up toK4	CLO2
Ш	Uniform convergence and Continuity: Uniform convergence and Integration-Uniform convergence and differentiation—Equicontinuous Families of functions- The Stone-Weierstrass Theorem	15	Up toK4	CLO3
IV	Power Series : The Exponential and Logarithmic Functions – The Trigonometric Functions-The Algebraic Completeness of the complex Field- Fourier series- The Gamma functions	15	Up toK5	CLO4
V	Integration: Primitive mappings- Partitions of unity- change of variables –Differential forms –Simplexes and chains-Stokes theorem	15	Up toK5	CLO5

Book for study:

Walter Rudin, *Principles of Mathematical Analysis*, 3rd Edition, McGraw – Hill Book Company (1976).

Chapters:

UNIT	CHAPTER(S)	SECTIONS
I	5	5.1 to 5.15
II	6	6.1 to 6.27
III	7	7.1 to 7.26
IV	8	8.1 to 8.22
V	10	10.1 to10.26 & 10.33

Books for Reference:

- 1. Dr. B. S. Vatsa, *Introduction to Real Analysis*, CBS publishers & Distribution, (2002)
- 2 Russell A. Gordon, *Real Analysis*, Second Edition, Pearson Pvt Ltd, (2002)
- 3. S.C. Malik, *Principles of Real Analysis*, New Age Inter National (p) ltd Publishers Second Edition (2008)
- 4. Shanti Narayan, M.D. Raisnghania, Elements of Real Analysis, S.Chand & Company Ltd.
- 5. H.L.Royden, P.M.Fitzpatrick, Real Analysis Fourth Edition, PHI Learning Pvt. Ltd,

Web Resources:

- 1.https://youtube.com/playlist?list=PL0kf7zBqty8gq1lkOwNw6Tn1hEBT8lboC
- 2.https://youtu.be/kmbhu3DIUkw

E-Books:

- 1. https://www.math.stonybrook.edu/~aknapp/download/b2-realanal-inside.pdf
- 2. http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF

Pedagogy:

• Chalk and Talk, Powerpoint presentations, Group Discussions, Quiz, Assignment and Seminar

Rationale for nature of Course:

Knowledge and Skill:

Demonstrate capacity for mathematical reasoning through analyzing, proving and explaining concepts from Real Analysis and skill to apply for other field in mathematics.

Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussion and other practical works and also insist them to check the books for references and web resources.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

CLO	Course Learning Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CLO1	Know how continuity of derivatives are generalized from real line	Up to K4
CLO2	Determine the Riemann-stieltjes integrability of a function ,prove a selection of theorems and concerning integration.	Up to K4
CLO3	Illustrate the effect of uniform convergence in the limit function with respect to continuity, differentiability and integrability.	Up to K4
CLO4	To be able to differentiate and integrate power series to obtain new ways to represent functions.	Up to K5
CLO5	To be able to understand the concept of integration of differential forms.	Up to K5

- K1- Remembering facts with specific answers
- K2- Basic understanding of facts.
- K3- Application oriented
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	3	1	1	3	3
CLO2	3	3	2	2	1	3
CLO3	3	3	2	2	2	3
CLO4	3	2	2	2	1	3
CLO5	3	3	2	2	1	3

1-Basic Level 2- Intermediate Level 3- Advanced Level

Lesson Plan

Unit	Course Content	75 Hours	Total Hours	Mode of Teaching	
1	The derivative of a real function: Mean Value Theorem The continuity of derivatives – L' Hospital's Rule -	7	15	Chalk & Talk	
	Taylor's Theorem- Differentiation of vector –valued functions	8			
II	The Riemann-Stieltjes integral: Definition and Existence of the Integral - Properties of the Integral. Integration	7	15	Chalk & Talk	
	differentiation - Integration of vector- valued functions - Rectifiable curves	8			
III	Uniform convergence and Continuity: Uniform convergence and Integration- Uniform convergence	8	15	PowerPoint presentations	
	differentiation – Equicontinuous Families of functions- The Stone-Weierstrass Theorem	7		& Seminar	
IV	PowerSeries: TheExponential and LogarithmicFunctions –TheTrigonometricFunctions	8	15	PowerPoint presentations,	
	The Algebraic Completeness of the complex Field-Fourier series- The Gamma functions.	7		Seminar& Assignment	
V	Integration: Primitive mappings-Partitions ounity- change of variables		15	PowerPoint presentation	
	Differential forms –Simplexes and chains-Stokes theorem	7		& Seminar	

Course Designer: Mrs. T. Thivya, Assistant Professor of Mathematics

Department of Mathematics				I M.Sc.,				
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total
					Hours/week			
1	Core	22OPMA13	Differential	4	6	25	75	100
			Equations					

Nature of the Course					
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented			

Course Objectives

- 1. Develop strong background on finding solutions to linear differential equations with variable coefficients and also with singular points.
- 2. Study the existence and uniqueness of the solutions of first order differential equations.
- 3. Finding various solutions to first order linear and nonlinear Partial Differential equations (PDE's).
- 4. To solve the nonlinear Partial Differential Equations by Charpit's Method and Jacobi's Method
- 5. To learn Euler Method.

Unit	Course Content	90 Hours	K Level	CLO
1	Linear Equations with Variable Coefficients: Introduction - Initial value problems for the homogeneous equation - Solutions of the homogeneous equation - The Wronskian and Linear independence - Reduction of the order of a homogeneous equation-The Non-homogeneous equation-Homogeneous equation with analytic coefficients — The Legendre Equation.	18	Up to K4	CL01
11	Linear Equations with Regular Singular Points: Introduction - The Euler equation - Second order equations with regular singular points - An example - Second order Equations with regular singular points - the general case - The Bessel equation- The Bessel equation(continued)	18	Upto K5	CLO2
m m	Existence and Uniqueness of Solutions to First Order Equations: Introduction – Equations with variables separated - Exact equations -The method of successive approximations - The Lipschitz condition - Convergence of the successive approximations – Non-local existence of solutions – Equations with complex -valued functions.	18	Up to K5	CLO3
IV	Partial Differential Equations of the First Order: Partial Differential Equations - Origins of First -order Partial Differential Equations - Cauchy's Problem for First- order Equations - Linear Equations of the First Order - Integral Surfaces Passing through a Given Curve - Surfaces Orthogonal to Given System of Surfaces.	18	Up to K5	CLO4

	Partial Differential Equations of The First Order:	18	Up to K5	CLO5
	Nonlinear Partial Differential Equations of the First Order -			
	Cauchy's Method of Characteristics - Compatible Systems			
V	of First order Equations – Charpit's Method - Special Types			
	of First order Equations-Solutions Satisfying Given			
	Conditions-Jacobi's Method- Applications of First- order			
	Equations.			

Books for study:

- 1. Earl A. Coddington, *An Introduction to Ordinary Differential Equations* PHI Learning Private Limited, Delhi, 2013.
- 2. IAN N.Sneddon, *Elements of partial Differential Equations*, McGraw –Hill International Editions, (1957)

UNIT	CHAPTER(S)	SECTIONS
I	3	1 to 8 (Text Book 1)
II	4	1to4 &7,8(Text Book 1)
Ш	5	1to 7 and 9(Text Book 1)
IV	2	1to 6 (Text Book 2)
V	2	7 to 14 (Text Book 2)

Books for Reference:

- 1. D. Somasundaram, Ordinary Differential Equations, Narosa Publishing House(2002)
- 2. E. Rukmanga Dachari, *Differential Equation*, Dorling Kindersley (India) Pvt. Ltd (2012)
- 3. M. D., Raisinghania, *Advanced Differential Equaitons*, S. Chand & Company Limited, New Delhi, 2012.
- 4. K. Sankara Rao, *Introduction to Partial Differential Equations*, Third Edition, PHI Learning, New Delhi, 2011.
- 5. J. N. Sharma & K. Singh, *Partial Differential Equations for Engineer and Scientists*, Narosa Publishing House, 2001.

Web Resources:

- 1. http://eqworld.ipmnet.ru/en/solutions/ode.htm
- 2.https://mathinsight.org/ordinary_differential_equation_introduction
- 3.https://tutorial.math.lamar.edu/Classes/DE/DE.aspx

E-Book:

 $1. https://books.google.com/books?id=PwivyktplHUC\&printsec=frontcover\&dq=introduction+to+ordinary+differential+Equations\&hl=en\&newbks=1\&newbks_redir=1\&sa=X\&ved=2ahUKEwiFrpT4-Mb0AhXNwzgGHe0PC2IQ6wF6BAgFEAE$

 $2. https://books.google.co.in/books?id=m2hvDwAAQBAJ\&printsec=frontcover\&dq=partial+differential+equations\&hl=en\&newbks=1\&newbks_redir=1\&sa=X\&ved=2ahUKEwjQpbyL-sb0AhXhxDgGHSC5B6MQ6wF6BAgDEAE$

Pedagogy:

• Chalk and Talk, Power point presentations, Group Discussions, Quiz, Assignment and Seminar

Rationale for nature of Course:

Knowledge and Skill:

- Have a good introduction to the study of ordinary differential equation and partial differential equation
- Learn techniques of finding solutions of some special type of equations and how to establish uniqueness and existences.

Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussion and other practical works and also insist them to check the Books for References and web resource

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

CLO	Course Learning Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CLO1	Obtain the solutions of second order homogenous and non-homogenous linear differential equation with constant coefficients and understand the utility of Wronskian, linear independence and linear independence solutions.	Up to K4
CLO2	Understand the concepts regular singular points and solve the Bessel equation.	Up to K4
CLO3	Understand the concept of successive approximation, the Lipchitz condition and prove local and Non-local existence theorems	Up to K4
CLO4	Classify first order partial differential equations and their solutions and solve those using different methods.	Up to K5
CLO5	Solve the first order linear and nonlinear PDE's by using charpits and Jacobi's method respectively.	Up to K5

- K1- Remembering facts with specific answers
- K2- Basic understanding of facts.
- K3- Application oriented- Solving Problems
- K4- Analyzing, examining and making presentations with evidence
- K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	3	1	2	1	3
CLO2	3	3	2	1	1	3
CLO3	3	3	1	2	2	3
CLO4	3	3	2	3	2	3
CLO5	3	3	1	2	1	3

1-Basic Level 2- Intermediate Level 3- Advanced Level

Lesson Plan

Unit	Course Content	90	Hours	Mode of Teaching
Ι	Introduction - Initial value problems for the homogeneous equation	5	18	Chalk & Talk
	Solutions of the homogeneous equation - The Wronskian and Linear independence	4		
	Reduction of the order of a homogeneous equation-The Non homogeneous equation	4		
	Homogeneous equation with analytic coefficients	3		
	The Legendre Equation	2		
II	Second order equations with regular singular points - An	4	18	Chalk & Talk
	exampleSecond order Equations with regular singular	3		
	points - the general case The Bessel equatio	3		
		4		
		4		
III	Introduction – Equations with variables separated	5	18	PowerPoint
	Exact equations -The method of successive approximations	4		Presentations & Seminar
	The Lipschitz condition - Convergence of the successive approximations	4		
	Non-local existence of solutions – Equations with complex -valued functions.	5		
IV	Partial Differential Equations - Origins of First -order Partial Differential Equations	5	18	PowerPoint Presentations,
	Cauchy's Problem for First- order Equations	3		Seminar
	Linear Equations of the First Order - Integral Surfaces	5		&Assignment
	Passing through a Given Curve	5		
V	Surfaces Orthogonal to Given System of Surfaces. Nonlinear Partial Differential Equations of the First Order	3	18	PowerPoint
•	Cauchy's Method of Characteristics -Compatible Systems	5	- 10	Presentations &
	of First order Equations	5	_	Seminar
	Charpit's Method - Special Types of First order Equations-Solutions Satisfying Given Conditions	3		
	Jacobi's Method- Applications of First- order Equations.	5		

Course Designer: Mrs. R.Revathi, Assistant Professor of Mathematics

	Department of Mathematics				I M.Sc.,			
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total
					Hours/week			
1	Core	22OPMA14	Differential	4	6	25	75	100
			Geometry					

Nature of the Course					
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented			

Course Objectives:

- 1. To impart knowledge of curves on surfaces, curvature and torsion.
- 2. To develop the concept of metric spaces and orthogonal trajectories.
- 3. To demonstrate the construction of new surface Geodesic.
- 4. To know the concept of second fundamental form and its principal curvature
- 5. To analyze the structure of developable and minimal surface

Unit	Course Content	90 Hours	K Level	CLO
•	The theory of Space curve: Arc length - Tangent, normal and binomial - Curvature and torsion of a curve given as intersection of two surfaces- Contact between curves and surfaces - Tangent Surface - Involutes and Evolutes - Intrinsic equations - Fundamentals existence theorem for space curves - Helices	18	Up toK4	CLO1
П	The Metric: Local Intrinsic Properties of a Surface: Definition of a surface – Curves on a surface – Surface of revolution – Helicoids – Metric – Direction Coefficients – Families of Curves – Isometric correspondence - Intrinsic properties	18	Up toK4	CLO2
Ш	The Metric: Local Intrinsic Properties of a Surface: Geodesics – Canonical Geodesic equations – Normal property of Geodesics – Existence theorems – Geodesic parallels – Geodesic curvature.	18	Up toK4	CLO3
IV	The Second Fundamental Form: Local Non- Intrinsic Properties of a Surface The Second fundamental form – Principal curvature – Lines of curvature.	18	Up toK5	CLO4
V	The Second Fundamental Form: Local Non- Intrinsic Properties of a Surface Developable – Developable associated with space curve – Developable associated with curves on surfaces – Minimal surfaces – Ruled surfaces	18	Up toK5	CLO5

Book for study:

T.J.Willmore, An Introduction to Differential Geometry, Oxford University Press (2008).

UNIT	CHAPTER(S)	SECTIONS
I	1	3 to 9
II	2	1 to 9
III	2	10 to 15
IV	3	1to3
V	3	4 to 8

Books for Reference:

- 1. D. Somasundaram, Differential Geometry, Narosa Publishing House (2008)
- 2..J.A.Thorpe, Elementary topics in Differential Geometry, Springs-verlag, (1997)
- 3. S.C.Mittal and D.C.Agarwall, *Differential Geometry*, Krishna Prakashan Media (P) Ltd (2001).
- 4.C.E.Weatherburn , *Differential Geometry of Three Dimensions* , Edition 1964, Reprint 1971, The English language Book Society and Cambridge University Press.
- 5. P.P.Gupta, G.S.Malik and S.K.Pundir, *Differential Geometry* 4thedition 2012, Pragati Prakashan

Web Resources:

- 1) http://www2.ing.unipi.it/griff/files/dC.pdf
- 2) https://link.springer.com/book/10.1007/978-3-319-55084-8
- 3) http://etananyag.ttk.elte.hu/FiLeS/downloads/_01_Csikos_Differential_geometry.pdf

E-books:

1.https://books.google.co.in/books/about/An_Introduction_to_Differential_Geometry.html?id=dbIAAQAAQBAJ&printsec=f rontcover&source=kp_read_button&hl=en&newbks=1&newbks_redir=1&redir_esc=y

2. http://www.freebookcentre.net/maths-books-download/Elementary-Differential-Geometry-Curves-and-Surfaces.html

Pedagogy:

• Chalk and Talk, Power point presentations, Group Discussions, Quiz, Assignment and Seminar

Rationale for nature of Course:

Knowledge and Skill:

- Analyze and solve complex problems using appropriate techniques from differential geometry.
- Apply differential geometry techniques to specific research problems in mathematics and other fields.

Activities to be given:

We will be providing students with intellectual problems, theory application problems and other practical works and also insist them to check the Books for References and web resources

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

No.	Course Learning Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CLO1	Understand the curvature and torsion of a space curve	Up to K4
CLO2	Understand the idea of surface of revolution	Up to K4
CLO3	Illustrate Geodesics on Curves	Up to K4
(1.04	Identifying the concept of principal curvature and lines of curvature	Up to K5
CLO5	Demonstrate the concept of developable and minimal surface	Up to K5

- K1- Remembering facts with specific answers
- K2- Basic understanding of facts.
- K3- Application oriented
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	1	3	2	3	3
CLO2	3	2	3	2	1	3
CLO3	3	1	3	2	2	3
CLO4	2	2	3	2	3	3
CLO5	2	2	3	2	3	3

1-Basic Level 2- Intermediate Level 3- Advanced Level

Lesson Plan

Unit	Course Content	90 Hours	Total Hour s	Mode of Teaching
1	Theory of space curves : Arc length - Tangent, normal and binomial –	6	18	Chalk & Talk
	Curvature and torsion of a curve given as intersection of two surfaces- Contact between curves and surfaces- Tangent surface	6		
	Involutes and Evolutes – Intrinsic equations – Fundamentals existence theorem for space curves – Helices	6		
II	The Metric: Local Intrinsic Properties of a Surface: Definition of a surface – Curves on a surface – Surface of revolution	6	18	Chalk &Talk
	Helicoids – Metric – Direction Coefficients – Families of Curves	6		
	Isometric correspondence - Intrinsic properties .	6		
III	The Metric: Local Intrinsic Properties of a Surface: Geodesics – Canonical Geodesic equations	6	18	Chalk & Talk
	Normal property of Geodesics – Existence theorems	6		
	Geodesic parallels – Geodesic curvature.	6		
IV	The Second Fundamental Form: Local Non- Intrinsic Properties of a Surface The Second fundamental form	6	18	PowerPoint Presentation & Seminar
	Principal curvature	6		
	Lines of curvature.	6		
V	The Second Fundamental Form: Local Non- Intrinsic Properties of a Surface Developable	6	18	PowerPoint Presentation
	Developable associated with space curve - Developable associated with curves on surfaces	6		& Seminar
	Minimal surfaces –Ruled surfaces	6		

Course Designer: Dr.Mrs. R.Mangayarkarasi , Assistant Professor of Mathematics

Department of Mathematics				I M.Sc.,				
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total
					Hours/week			
1	DSEC	22OPMADSE1A	Number Theory	4	6	25	75	100
			and					
			Cryptography					

Nature of the Course					
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented			

Course Objectives

- 1. To know about fundamental algorithms for integer arithmetic and greatest common divisor calculation.
- 2. To find modular arithmetic and other number theoretic computations.
- 3. To derive algorithms and linear congruence
- 4. To Analyze Quadratic Residues and Diophantine equation
- 5. To explore applications of number theory in cryptography.

Unit	Course Contents	90 Hours	K Level	CLO
I	Arithmetical Functions and Dirichlet Multiplication Introduction – Divisibility – The Mobius function $\mu(n)$ – The Euler totient function $\Phi(n)$ – A relation connecting Φ and The divisor functions $\sigma_{\alpha}(n)$ - Generalized convolutions – Formal power series – The Bell series of an arithmetical function – Bell series and Dirichlet multiplication – Derivatives of an arithmetical functions – The Selberg Identity.	18	Up to K4	CLO1
II	Averages of Arithmetical Functions Introduction – The big oh notation. Asymptotic equality of functions – Euler's summation formula – Some elementary asymptotic formulas – The average order of d(n) - The average order of the divisor functions σ_{α} (n) - The average order of Φ (n) - An application to the distribution of lattice points visible from the origin – The average order of μ (n) and of \dot{U} (n) - The partial sums of a Dirichlet product - Applications to μ (n) and L(n) - Another identity for the partial sums of a Dirichlet product.	18	Up to k4	CLO2

III	Some Elementary Theorems on the Distribution of Prime Numbers and Congruence's: Introduction – Chebyshev's functions (x) and (x) - Definition and basic properties of congruence - Residue classes and complete residue systems – Linear congruence – Reduced residue systems and Euler Fermat		Up to K4	CLO3
	theorem – Polynomial congruence modulo p .Lagrange's theorem – Applications of Lagrange's theorem – Simultaneous linear Congruence . The Chinese Remainder theorem – Applications of the Chinese Remainder theorem – Polynomial congruence with prime power moduli - The Principle of cross classification – A decomposition property of reduced residue systems	18		
IV	Quadratic Residues and the Quadratic Reciprocity Law: Quadratic residues – Legendre's symbol and its properties – Evaluation of (-1/p) and (2/p) –Gauss' lemma- The quadratic reciprocity law-Applications of the reciprocity law- The Jacobi symbol - Applications of Diophantine equations- Gauss sums and the Quadratic reciprocity law.	18	Up to K5	CLO4
V	More on Number Theory: Public-Key Cryptography, RSA and Other Public Cryptosystems Discrete logarithm — Principles of public key — Cryptosystem — RSA algorithm — Elliptic curve cryptography.	18	Up to K5	CLO5

Books for study:

- 1. TOM.M. Apostol, *Introduction to Analytic Number theory*, Narosa Publishing *House* (1998).
- 2. William Stallings, *Cryptography and Network Security Principles and Practice*, Prentice Hall, Fifth Edition, 2011

UNIT	CHAPTER(S)	SECTIONS		
I	2	2.1 to 2.19 Book No.1		
П 3		3.1 to 3.12 BookNo1		
III	4&5	4.1,4.2 &5.1 to 5.11		
		Book No1		
IV	9	9.1 to 9.9 Book No1		
V	8,9&10	8.5, 9.1,9.2 & 10.4		
		Book No2		

Books for Reference:

- 1) S.G. Telang, Number Theory, Tata McGraw-Hill (2001).
- 2) Neal Koblitz, A Course in Number Theory and Cryptography, Springer-Verlag, 1987.
- 3) Ivan Niven, Niven Ivan, Herbert S. Zuckerman, Zuckerman Herbert S An introduction to the theory of numbers ,1972.
- 4) Martin Erickson, Anthony Vazzana, introduction to Number Theory, first Indian, 2009.
- 5) David M.Burton, Elementary Number Theory, Wm.C.Brown Publishers 1989.

Web Resources

- 1. http://www.fuchs-braun.com/media/532896481f9c1c47ffff8077fffffff0.pdf
- 2.https://www.flowsurfv3.net/c.php?cu=https%253A%252F%252Fwstein.org%252Fent%252Fent.pdf&sh=wstein.org%2Fent%2Fent.pdf&l=IN&po=2&u=mbeh-20210420-ccmnet-

flga33&a=3100&tr=7gb1211411dgd&keyword=number%2Btheory%2Bpdf%2Bfree%2Bdownload&aid=61a887bb708ea&t=8&bc=0&rt=1638434746.9534&n=5&loc=normal. 3. https://crypto.stanford.edu/pbc/notes/numbertheory/book.pdf

E-books

http://www.freebookcentre.net/maths-books-download/gotoweb.php?id=9568
 https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxha2hsYWdoZWF8Z3g6MTRmYTdkZDQ4Y2Q2MmFhMQ

Pedagogy:

• Chalk and Talk, Power point presentations, Group Discussions, Quiz, Assignment and Seminar

Rationale for nature of Course:

Knowledge and Skill:

- Develop a deeper conceptual understanding of the theoretical basis of number theory and cryptography.
- Apply elementary number theory to cryptography

Activities to be given:

We will be providing students with intellectual problems, theory application problems and other practical works and also insist them to check the Books for References and web resources.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

No.	Course Learning Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CLO1	Understand the properties of divisibility and congruence.	Up to K4
CLO2	Use arithmetic functions in area of mathematics	Up to K4
CLO3	Understand and use the theorems ,Chinese reminder theorem and Lagrange's theorem	Up to K4
CLO4	Know the applications of reciprocity law and Diophantine equation	Up to K5
CLO5	Apply elementary number theory concepts in cryptography.	Up to K5

- K1- Remembering facts with specific answers
- K2- Basic understanding of facts.
- K3- Application oriented
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	2	3	2	3	3
CLO2	3	2	2	2	1	3
CLO3	3	3	2	2	2	3
CLO4	3	3	2	2	1	3
CLO5	3	3	2	2	1	3

1-Basic Level 2- Intermediate Level 3- Advanced Level

Lesson Plan

Unit	Course	90	Total	Mode of
	Content	Hours	Hours	Teaching
1	Arithmetical Functions and Dirichlet Multiplication Introduction – Divisibility – The Mobius function $\mu(n)$ – The Euler totient function $\Phi(n)$ – A relation connecting φ and μ	6	18	Chalk & Talk
	A product formula for $\Phi(n)$ – The Dirichlet product of arithmetical functions – Dirichlet inverses and the mobius inversion formula – The Mangoldt function $L(n)$ – Multiplicative functions - Multiplicative functions and Dirichlet multiplication	6		
	The inverse of a completely multiplicative function- Liouville's function $\lambda(n)$ - The divisor functions σ_{α} (n) - Generalized convolutions –Formal power series – The Bell series of an arithmetical function – Bell series and Dirichlet multiplication – Derivatives of an arithmetical functions – The Selberg Identity.	6		
II	Averages of Arithmetical Functions Introduction – The big oh notation. Asymptotic equality of functions – Euler's summation formula – Some elementary asymptotic formulas	6	18	Chalk & Talk
	The average order of $d(n)$ - The average order of the divisor functions $\sigma_{\alpha}(n)$ - The average order of $\Phi(n)$ - An application to the distribution of lattice points visible from the origin	6		
	The average order of $\mu(n)$ and of $\Lambda(n)$ - The partial sums of a Dirichlet product - Applications to $\mu(n)$ and Λ (n) - Another identity for the partial sums of a Dirichlet product.	6		

III	Some Elementary Theorems on the Distribution of	6	18	Chalk & Talk
	Prime Numbers and Congruence's:			
	Introduction – Chebyshev's functions $\psi(x)$ and $I(x)$ -			
	Definition and basic properties of congruence - Residue			
	classes and complete residue systems			
	Linear congruence – Reduced residue systems and Euler	6		
	Fermat theorem - Polynomial congruence modulo p -			
	Lagrange's theorem – Applications of Lagrange's			
	theorem - Simultaneous linear Congruence . The			
	Chinese Remainder theorem – Applications of the			
	Chinese Remainder theorem			
	Polynomial congruence with prime power moduli - The	6		
	Principle of cross classification – A decomposition			
	property of reduced residue systems.			
IV	Quadratic Residues and the Quadratic Reciprocity	6	18	PowerPoint
	Law:			Presentation
	Quadratic residues – Legendre's symbol and its			&Seminar
	properties -Applications of the reciprocity law- The			
	Jacobi symbol			
	Evaluation of (-1/p) and (2/p) –Gauss' lemma- The	6		
	quadratic reciprocity law			
	Applications of Diophantine equations- Gauss sums and	6		
	the Quadratic reciprocity law.			
V	More on Number Theory: Public-Key	6	18	PowerPoint
	Cryptography, RSA and Other Public			Presentation &
	Cryptosystems			Seminar
	Discrete logarithm			
	Principles of public key – Cryptosystem	6		
	RSA algorithm – Elliptic curve cryptography	6		

Course Designer: Dr. Mrs. S. Sripriya, Assistant Professor of Mathematics

Department of Mathematics				I M.Sc.,				
Sem	Category	Course Code	Course	Credits	Contact	CIA	SE	Total
			Title		Hours/week			
1	DSEC	22OPMADSE1B	Fluid	4	6	25	75	100
			Dynamics					

Nature of the Course				
Knowledge and Skill	Employability Oriented	Entrepreneurship oriented		
Oriented	Employability Oriented	Entrepreneursing offented		

- 1. To develop an application for properties of Newtonian Fluid.
- 2. To Study analytical solution to variety of simplified problems.
- 3. To understand the dynamics of fluid flows and governing the non dimensional parameters.
- 4. To give fundamental knowledge of fluid, its properties and behavior under various conditions of internal and external flows.
- 5. To describe the principles of motion for fluids.

Unit	Course Content	90 Hours	K Level	CLO
I	Real fluids and Ideal fluids- Velocity of a fluid at a point – streamlines path lines- velocity potential –Vorticity Vector – Equation of continuity – acceleration of a fluid	18	Up to K4	CLO1
II	Equation of motion of a fluid: Pressure at a point in a fluid at rest— pressure at a point in a moving fluid-Euler's equations of motion — Bernoulli's Equation, Bernoulli's theorem.	18	Up to K4	CLO2
III	Some two-dimensional flows: meaning of two-dimensional flow –stream function – two dimensional image systems-Milne – Thomson circle theorem –Theorem of Blasius.	18	Up to K4	CLO3
IV	Elements of Thermodynamics: The equation of state of a substance – the first law of thermodynamics- internal energy of a gas – specific heats of a gas- function of state; Entropy-Maxwell's thermodynamics relation	18	Up to K5	CLO4
V	Shock waves: formation of shock waves – elementary analysis of normal shock waves –elementary analysis of oblique shock waves-the method of characteristics for two – dimensional ,homentropic, irrational flow.	18	Up to K5	CLO5

F.Chorlton: *Text book of Fluid Dynamics*, CBS publishers and Distributors Pvt.Limited.2004.

Books for Reference:

- 1. M.D.Raisinghania: Fluid Dynamics, S.Chand, 2003.
- 2. Michel Rieutord: Fluid Dynamics, Springer International Publishing, 2015.
- 3. Geoffrey K. Vallis *Essentials of Atmospheric and Oceanic Dynamics* 1st dition, 2019.
- 4. Richard W. Johnson: Handbook of Fluid Dynamics 2nd Edition.
- 5. George EmKarniadakis, Spencer J. SherwinSpectral/hp *Element Methods for Computational Fluid Dynamics (Numerical Mathematics and Scientific Computation)* 2nd Edition

Web Resourses:

- 1.https://www.meteo.physik.unimuenchen.de/lehre/roger/manuskripte/Fluid_Dynamics.pdf
- 2. http://www.ccpo.odu.edu/~klinck/Reprints/PDF/groschBook2011.pdf 3.https://www.engineerclassroom.com/2019/01/a-textbook-of-fluid-mechanics-and 18.html

E-books:

1.http://www.issp.ac.ru/ebooks/books/open/Advanced_Fluid_Dynamics.pdf 2.https://www.u-cursos.cl/usuario/5d90bc31eadb7b756f4a0d3fd9789c4f/mi_blog/r/1205763481Batchelor.-Introduction-to-Fluid-Dynamics.pdf

Pedagogy:

 Chalk and Talk, Powerpoint presentations, Group Discussions, Quiz, Assignment and Seminar

Rationale for nature of Course:

Knowledge and Skill:

- Students will get the knowledge of basic principles of fluids mechanics
- To get the ability to analyze the fluid flow problems with the application of Bernoulli's theorem.

Activities to be given: We will be providing students with intellectual problems, theory application problems, group discussions and other practical works and also insist them to check the Books for References and web resources.

Annexure -1

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

No.	Course Learning Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CLO1	Describe the principles of motion for fluids	Up to K4
CLO2	Formulate the motion of fluid element	Up to K4
CLO3	Use the dimensional analysis and derive dimensional numbers	Up to K4
CLO4	Understanding of thermo dynamics properties and processes	Up to K5
CLO5	Be able to analyze shock waves	Up to K5

- K1- Remembering facts with specific answers
- K2- Basic understanding of facts.
- K3- Application oriented
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	2	1	3	2	3	3
CLO2	1	2	2	2	1	3
CLO3	1	1	3	3	1	3
CLO4	2	2	2	2	2	3
CLO5	2	2	3	2	3	3

1-Basic Level 2- Intermediate Level 3- Advanced Level

Annexure -1

Lesson Plan

TT •.	Ecsson Figure						
Unit	Course Content	Hours	90	Mode of			
			Hours	Teaching			
1	Real fluids and Ideal fluids- Velocity of a fluid at a	6	18	Chalk and			
	point			Talk			
	streamlines path lines- velocity potential	6					
	Vorticity Vector – Equation of continuity – acceleration of a fluid.	6					
II	Equation of motion of a fluid: Pressure at a point in a fluid at rest	6	18	Chalk and Talk			
	pressure at a point in a moving fluid-Euler's equations of motion	6					
	Bernoulli's Equation, Bernoulli's theorem.	6					
III	Some two-dimensional flows: meaning of two-dimensional flow	6	18	Chalk and Talk			
	stream function – two dimensional image systems	6					
	Milne – Thomson circle theorem –Theorem of Blasius.	6					
IV	Elements of Thermodynamics: The equation of state of a substance – the first law of	6	18	PowerPoint Presentation			
	thermodynamics			&Seminar			
	internal energy of a gas – specific heats of a gas- function of state; Entropy	6					
	Maxwell's thermodynamics relation	6]				
V	Shock waves: formation of shock waves –	6	18	PowerPoint			
	elementary analysis of normal shock waves		1	Presentation			
	elementary analysis of oblique shock waves-the	6		&Seminar			
	method of characteristics for two		4				
	dimensional, homentropic, irrational flow.	6					

Course Designer: Dr. Mrs. S. Sripriya, Assistant Professor of Mathematics

	Department of Mathematics					IM.S	Sc.,	
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total
					Hours/week			
1	IDC	22OPMAID1	Teaching&	2	2	25	75	100
			Research					
			Aptitude					
			Paper - I					

Nature of the Course				
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented		

- 1. To enhance the problem solving skills.
- 2. To improve the basic mathematical skills
- 3. To help to clear the students who are preparing for any type of competitive exams
- 4. To identify number in logical reasoning
- 5. To apply the number in related test

Unit	Course Content	30 Hours	K Level	CLO
I	Alphabet test, Classification Test- Analogy Test	6	Up to K4	CLO1
II)	Coding and Decoding Test number and Alphabetical series (test ,Number related, test blood relations test)	6	Up to K4	CLO2
III	Assertions and presumption ,statement and conclusion	6	Up to K4	CLO3
IV	Series completion test, Venn diagram, diagram type test different position of dice	6	Up toK5	CLO4
V	(Missing number-figure analogy test figure classification test classification of figures into groups.)	6	Up to K5	CLO5

Upkar's UGC NET/JRF/SET Teaching & Research Aptitude (General Paper-I).

UNIT	CHAPTER(S)	PAGES
I	4	145 to 160
П	4	161 to 176
Ш	4	184 to 191
IV	4	192 to 206
V	4	207 to 215

Books for References:

- 1) R. Gupta's UGC-NET Junior Research Fellowship and Lectureship Exam Paper-1 Teaching and Research Aptitude,
- **2**) Dr. K. Kautilya, UGC Net/Jrf/Set Teaching & Research Aptitude General Paper-1, 1761,
- 3) Oswaal 20 Practice Papers General Paper 1 (Teaching and Research Aptitude): UGC NET/JRF for 2020 Examination.

Web resources:

https://www.upkar.in>

E-book:

https://www.google.co/url?sa=i&url=https%3A%2F%2Fwww.scholarify.in%2Fugc-net-study-

 $materials for paper 1\% 2F\&psig=AOvVaw 1W10vu2X5bv7m7tR3nkJ8s\&ust=16\\38600886154000\&source=images\&cd=vfe\&ved=0CAsQjRxqFwoTCICNmp\\mGx_QCFQAAAAAAAAAAAAAAADAD$

Pedagogy:

 Chalk and Talk, Power point presentations, Group Discussions, Quiz, Assignment and Seminar

Rationale for nature of Course:

Knowledge and Skill:

- The students able to perceive and process numbers and related symbols to perform basic arithmetic operations and perform estimates
- Develop decision making skill

Activities to be given

Practice latest question papers of various competitive exams

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

No.	Course Learning Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CLO1	Able to do verbal reasoning problems	Up to K4
CLO2	Able to do non verbal reasoning problems	Up to K4
CLO3	Understand and practice assertions and presumption problems.	Up to K4
CLO4	Understand and practice classification of figures and venn diagram	Up to K5
CLO5	Able to do critical thinking and decision making ability	Up to K5

- K1- Remembering facts with specific answers
- K2-Basic understanding of facts.
- K3- Application oriented
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	3	2	2	2	3
CLO2	3	3	2	1	2	3
CLO3	3	3	1	2	2	3
CLO4	3	3	1	2	2	3
CLO5	3	3	2	1	2	3

1-Basic Level 2- Intermediate Level 3- Advanced Level

Lesson Plan

Unit	Course Content	30 Hours	Mode of Teaching
1	Alphabet test, Classification Test- Analogy	6	Chalk & Talk
	Test		
II	Coding and Decoding Test number and	6	Chalk & Talk
	Alphabetical series test ,Number related, test		
	blood relations test		
III	Assertions and presumption ,statement and	6	Chalk & Talk
	conclusion		
IV	Series completion test, Venn diagram,	6	Chalk & Talk
	diagram type test different position of dice		
V	Missing number-figure analogy test figure	6	Chalk & Talk
	classification test classification of figures into		
	groups.		

Course Designer: Mrs. S. Selvi, Assistant Professor of Mathematics

	Department of Mathematics					I M.Sc	·-,	
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total
					Hours/week			
II	Core	22OPMA21	LINEAR	4	5	25	75	100
			ALGEBRA					

Nature of the Course				
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented		

- 1. To familiarize with linear system and matrices
- 2. To understand the concepts of polynomials, Determinants and their properties
- 3. To learn, how linear algebra in ubiquitous in Mathematics
- 4. To acquire idea to know linear transformation and its algebra
- 5. To impact the knowledge of rational forms and Jordon forms

Unit	Course Content	75 Hours	K Level	CLO
1	Linear Transformations Linear Transformations—The Algebra of Linear Transformations— Isomorphism— Representations of Transformations by Matrices—Linear Functionals.	15	Up to K4	CLO1
П	Polynomials, Determinants Algebras-The Algebra of Polynomials –Polynomial Ideals - The Prime Factorization of a Polynomial –Commutative Rings - Determinant Functions.	15	Up to K4	CLO2
Ш	Determinants, Elementary Canonical Forms Permutations and the Uniqueness of Determinants – Additional Properties of Determinants - Characteristic Values – Annihilating Polynomials.	15	Up to K4	CLO3
IV	Elementary Canonical Forms Invariant Subspaces — Simultaneous Triangulations; Simultaneous Diagonalization — Direct- Sum Decompositions — Invariant Direct Sums — The Primary Decomposition Theorem.	15	Up to K5	CLO4
V	The Rational and Jordan Forms Cyclic Subspaces and Annihilators— Cyclic Decompositions and the Rational Forms—The Jordan Form	15	Up to K5	CLO5

1. Kenneth Hoffman and Ray Kunze, *Linear Algebra*, 2nd Edition, Prentice-Hall of India Pvt. Ltd, New Delhi, 2013.

UNIT	CHAPTER(S)	SECTIONS
I	3	3.1 to 3.5
п	4&5	4.1,4.2&4.4.,4.5&5.1,5.2
III	5&6	5.3,5.4&6.2,6.3
IV	6	6.2,6.3,6.4 to 6.8
V	7	7.1 to 7.3

Books for Reference:

- 1. I.N. Herstein, *Topics in Algebra*, 2nd Edition, Wiley Eastern Ltd, New Delhi, 2013.
- 2. Michael Artin, *Algebra* 2nd edition, 2011.
- 3. Surjeet Singh, Qazi Zameeruddin Mordern Algebra 8th Edc,2008.

Web Resources:

- **1**.https://nptel.ac.in/courses/111/106/111106051/
- 2.https://nrich.maths.or g/1422
- 3.http://www.math.brown.edu/dabramov/MA/f1314/251/Zijian-notes.pdf

E-Books:

 $1, https://books.google.com/books?id=0DUXym7QWfYC\&printsec=frontcover\&dq=linear+algebra\&hl=en\&newbk=1\&newbks_redir=1\&sa=X\&ved=2ahUKEwioj5pwtP0AhUTSWwGHRsgAdUQ6wF6BAgEEAE$

2,https://books.google.com/books?id=FhPhDAAAQBAJ&printsec=frontcover&dq=linear+algebra&hl=en&newbks=1&newbks_redir=1&sa=X&ved=2ahUKEwiywLSLw9P0AhXK8XMBHXwiB1wQ6AF6BAgEEAI

Pedagogy:

 Chalk and Talk, Power point presentations, Group Discussions, Quiz, Assignment and Seminar

Rationale for nature of Course: Knowledge and Skill:

- Demonstrate accurate and efficient use of linear algebra techniques as they relate to the concepts like linear transformation, polynomial etc.,
- Apply problem solving using linear algebra techniques applied to diverse situations in physics, computer science and other mathematical contexts.

Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussions and other practical works and also insist them to check the reference books and web resources

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

No.	Course Learning Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CLO1	Understand the relationship between a linear transformation and its matrix representation	Up to K4
CLO2	Understand the idea of algebra of polynomials	Up to K4
CLO3	Understand the concept of Determinants and matrix with various conditions	Up to K4
CLO4	decompose a vector apace into a sum of invariant subspaces an a linear transformation into a direct sum of induced operators	Up to K5
CLO5	Compute the cyclic subspace generators by a vector and to construct the rational and Jordon form of linear transformation.	Up to K5

- K1- Remembering facts with specific answers
- K2- Basic understanding of facts.
- K3- Application oriented
- K4- Analyzing, examining and making presentations with evidence
- K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	3	2	1	2	3
CLO2	3	3	2	2	2	3
CLO3	3	3	2	2	1	3
CLO4	3	2	1	2	1	3
CLO5	3	2	1	2	1	3

1-Basic Level 2- Intermediate Level 3- Advanced Level

Lesson Plan

Unit	Course Content	Hours	75 Hours	Mode of Teaching	
	Linear transformations	3		Chalk and Talk	
	The Algebra of Linear transformations	3			
I	Isomorphism of vector spaces	3	15		
	Representations of linear transformations by matrices	3			
	Linear Functionals.	3			
	Algebras	2		Chalk and Talk	
	The algebra of polynomials	3			
II	Polynomial ideals	3	15		
	The prime factorization of a polynomial	2			
	Commutative rings	3			
	Determinant functions.	2			
	Permutations and the	3		Chalk and Talk	
III	uniqueness of determinants		15		
111	Classical adjoint of a (square) matrix	3	13		
	Inverse of an invertible	3			
	matrix using determinants				
	Characteristic values	3			
	Annihilating polynomials	3			
IV	Invariant subspaces	3		Chalk and Talk &	
	Simultaneous triangulations	3	15	Group Discussion	
	Simultaneous Diagonalization	2			
	Direct-sum decompositions	3			
	Invariant direct sums	2			
	Primary decomposition theorem	2			
	Cyclic subspaces	2		Chalk and Talk &	
V	Cyclic decompositions theorem (Statement only)	3	15	Seminar	
	Generalized Cayley	3			
	Hamilton theorem	3			
	Rational forms	2			
	Jordan forms	2			
	Total Hours		75		

Course Designer: Mrs. S. Selvi ,Assistant Professor of Mathematics

	Department of Mathematics					I M.Sc.,	,	
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total
					Hours/week			
II	Core	22OPMA22	Measure and	4	5	25	75	100
			Integration					

Nature of the Course					
Knowledge and Skill	Employability Oriented	Entrepreneurship oriented			
Oriented	1 3 3	1 1			

- 1. To familiarize with the Measurable sets and Measurable Functions
- 2. To understand the concepts of Abstract Measure Space and \boldsymbol{L}^{P} Space
- 3. To acquire idea to know functions of several variables
- 4. To obtain the knowledge of the lebesgue measure and integral
- 5. To know the Radon Nikodym theorem

Unit	Course Contents	75 Hours	K Level	CLO
1	Measure on a Real line: Lebesgue Outer Measure-Measurable Sets – Measurable Functions.	15	Up to K4	CLO1
П	Integration of functions of a Real line: Integration of non - negative functions- The General Integral - Integration of Series - Riemann and Lebesgue Integral.	15	Up to K4	CLO2
III	Abstract Measure Spaces: Measures and outer Measures-Extension of a Measure- Measure Spaces-Integration With Respect to a Measure.	15	Up to K4	CLO3
IV	Inequalities and the L ^p Spaces: The L ^p spaces -Convex functions – Jensen's Inequality- The Inqualities of Holder and Minkowski.	15	Up to K5	CLO4
V	Signed Measures and their Derivatives: Signed measures and the Hahn Decomposition – The Jordan Decomposition- The Radon – Nikodym theorem	15	Up to K5	CLO5

G.de Barra, *Measure Theory and Integration*, (Second Edition)-2013,New Age international(p) Ltd, Publishers

UNIT	CHAPTER(S)	SECTIONS
I	2	2.1,2.2&2.4
II	3	3.1to3.4
III	5	5.1,5.2&5. 5,5.6
IV	6	6.1 to 6.4
V	8	8.1 to 8.3

Books for Reference:

- 1.H.L.Royden, *Real Analysis*, Prentice Hall of India, pvt., Ltd. (2004).
- 2.Robert G. Bartle, Donald R. Sherbert, *Introduction to Real Analysis*, John Wiley & Sons 1982.
- 3.Tom M.Apostol, Mathematical Analysis, Second Edition, 1974 Narosa Publishing House

Web Resources:

- 1. https://youtube.com/playlist?list=PLV3qyO5ZXUfXQtgZzoLtS9CLhXDdzQIFz
- 2. https://youtu.be/6Px518QAs-g
- 3. http://infoedu.ir/wp-content/uploads/2014/03/MeasureTheoryBook.pdf

E-books:

- 1. https://people.math.ethz.ch/~salamon/PREPRINTS/measure.pdf
- 2. https://library.oapen.org/bitstream/id/ce19d94d-b8b6-420f-9e69-d9f565703c26/1007045.pdf

Pedagogy:

• Chalk and Talk, Power point presentations, Group Discussions, Quiz, Assignment and Seminar

Rationale for nature of Course: Knowledge and Skill:

The knowledge of the measure and integration is used to study of several advanced topics in functional analysis ,partial differential equations and many other areas of mathematics, and familiar with application of measure theory to probability theory. To perform operations using the Lebeque integral and Lebeque space and also able to apply integration theory in one or several variable to formulate and solve problems in mathematics.

Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussions and other practical works and also insist them to check the reference books and web resources.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

CLO	Course Learning Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CLO1	Understand and analyze outer measure and measurable sets	Up to K4
CLO2	Be able to understand, the requirement and the concept of the Lebesque integral along its properties	Up to K4
CLO3	Be able to extend the concept of outer measure in an abstract space and integration with respect to a measure	Up to K4
CLO4	Be able to learn and apply Holder and Minkowski inequalities in L ^p -spaces.	Up to K5
CLO5	Do decomposition	Up to K5

- K1- Remembering facts with specific answers
- K2- Basic understanding of facts.
- K3- Application oriented
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	2	1	2	1	3
CLO2	3	3	1	2	2	3
CLO3	3	3	2	2	1	3
CLO4	3	3	1	2	1	3
CLO5	3	2	1	1	1	3

1-Basic Level 2- Intermediate Level

3- Advanced Level

Lesson Plan

Units	Course Content	Hours	75	Mode of
			Hours	Teaching
I	Lebesgue Outer Measure Measurable	5	15	Chalk and
	Sets	5		Talk& Group
	Measurable Sets	5		Discussion
	Measurable Functions			
II	Integration of non - negative	4	15	Chalk and Talk
	functions	4		
	The General Integral	4		
	Integration of Series	3		
	Riemann and Lebesgue Integral			
	Measures and outer Measures.	4		Chalk and Talk,
	Extension of a Measure	4		PPT, Seminar
III		4	15	·
	Measure Spaces	3		
	Integration With Respect to a Measure			
IV	The L ^p spaces			Chalk and Talk,
	Convex functions	3		Seminar
		4	15	PPT, Group
	Jensen's Inequality The Inequalities of Holder and	4		Discussion
	Minkowski	4		Assignment
	Signed measures and the Hahn	5		Chalk and Talk,
	Signed measures and the Hallin	5		Seminar ,PPT
V	Decomposition	5	15	Schillar ,1 1 1
•	The Jordan Decomposition		13	
	The Radon – Nikodym theorem			
	·			
	Т	Cotal Hours	75	

Course Designer: Mrs. T.Thivya, Assistant Professor of Mathematics

	Department of Mathematics					I M.Sc.,		
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total
					Hours/week			
II	Core	22OPMA23	Graph Theory	4	6	25	75	100
			with Applications					

Nature of the Course					
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented			

- 1. To enable the students to apply Graph Theritical Techniques in Applications.
- 2. To demonstrate knowledge of Connectivity.
- 3. To study relationship between Euler Tours and Hamilton Cycles.
- 4. To make familiarity with Directed Graphs.
- 5. To assist the students to explore social network analysis software.

Unit	Course Contents	90	K Level	CLO
Cint	Course Contents	Hours	K Level	CLO
	Graphs and Subgraphs			
	Definition and Examples of a Graph – Simple Graphs - Graphs			
•	Isomorphism- The Incidence and Adjacency Matrices -	18	Up to K4	CLO1
•	Subgraphs – Vertex Degrees – Paths and Connection– Cycles -	10	Op to K4	CLOI
	Trees - Cut Edges and Bonds - Cut Vertices - Cayley's			
	Formula(Applications) -The Connector Problem.			
	Connectivity			
II	Connectivity – Blocks (Applications) - Construction of Reliable	18	Up to K4	CLO2
	Communication Networks			
	Euler Tours and Hamilton Cycles			
III	Euler Tours - Hamilton Cycles (Applications) - The Chinese	18	Up to K4	CLO3
	Postman Problem – The Travelling Salesman Problem.			
	Directed Graphs			
	Directed Graphs - Directed Paths - Directed Cycles			
IV	(Applications) – A Job sequencing Problem - Designing an	18	Up to K5	CLO4
	Efficient Computer Drum - Making a Road System One-way -			
	Ranking the Participants in Tournament.			
	Networks			
V	Flows-Cuts-The Max-Flow Min-Cut Theorem (Applications)—	18	Up to K5	CLO5
	Menger's Theorems - Feasible Flows			

J.A. Bondy and U.S.R. Murty.(1982), *Graph Theory with Applications*. 5th print, North Holland .

UNIT	CHAPTER(S)	SECTIONS
I	1and 2	1.1 to 1.7 &2.1 to 2.5
II	3	3.1 to 3.3
III	4	4.1 to 4.4
IV	10	10.1 to 10.7
V	11	11.1 to 11.5

Books for Reference:

- 1. John Clark. Derek Allan Holton. Graph Theory. University of Otago (1995).
- 2. Frank Harary, (1969), *Graph theory*, Addition-Wesley Publishing Company, First Edition.
- 3.Murugan.M.,(2003), Topics in Graph theory and Algorithms, Muthal Publishing House,
- 4. S.A. Choudum. *A First Course in Graph Theory*. Macmillan Publishers India Limited (2011).
- 5. Narasing Deo (2007), *Graph Theory with Applications to Engineering and Computer science*, Pretice .

Web Resources:

- https://www.shahucollegelatur.org.in/Department/Studymaterial/sci/it/BCS/FY/book.pdf
- 2. https://www.flowsurfv3.net/c.php?cu=https%253A%252F%252Fwww.shahucolleg elatur.org.in%252FDepartment%252FStudymaterial%252Fsci%252Fit%252FBCS %252FFY%252Fbook.pdf&sh=www.shahucollegelatur.org.in%2F...%2Fit%2FBC S%2FFY%2Fbook.pdf&l=IN&po=2&u=mbeh-20210420-ccmnet-flga33&a=3100&tr=1712umd71g10&keyword=Graph%2Btheory%2Bwith%2Bapp lication%2Bpdf&aid=61a88bda894f1&t=8&bc=0&rt=1638435802.1301&n=3&loc=normal

E – Books:

- 1. http://www.freebookcentre.net/maths-books-download/Descriptive-Complexity,-Canonisation and-Definable-Graph-Structure-Theory.html
- 2. https://www.maths.ed.ac.uk/~v1ranick/papers/wilsongraph.pdf

Pedagogy:

Chalk and Talk, Group Discussions, Quiz, Assignment and Seminar

Rationale for nature of Course: Knowledge and Skill:

Provides a helpful tool to quantity & simplify the many moving parts of dynamic systems

Activities to be given:

Tocreate social graphs for their own social networks. Group Discussion, Seminar & Project

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

CLO	Course Learning Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CLO1	Examine the Graphs and Subgraphs .	Up to K4
CLO2	Understand the Connectivity	Up to K4
CLO3	Investigating the relationship between Euler Tours and Hamilton Cycles.	Up to K4
CLO4	Explain the Directed Graphs.	Up to K5
CLO5	Compute the Analysis of Networks.	Up to K5

K1- Remembering facts with specific answers

K2- Basic understanding of facts.

K3- Application oriented

K4- Analyzing, examining and making presentations with evidence.

K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	2	3	3	2	3
CLO2	3	3	3	2	3	3
CLO3	3	2	2	3	3	3
CLO4	3	3	2	2	3	3
CLO5	3	2	3	2	2	3

1-Basic Level 2- Intermediate Level 3- Advanced Level

Lesson Plan

Unit	Course Content	90 Hours		Mode of
				Teaching
I	Definition and Examples of a Graph – Simple	6	18	Chalk & Talk,
	Graphs - Graphs Isomorphism- The Incidence			Quiz, Exercise
	and Adjacency Matrices – Subgraphs.			
	Vertex Degrees - Paths and Connection-	6		
	Cycles			
	Trees - Cut Edges and Bonds - Cut Vertices -	6		
	Cayley's Formula			
	(Applications) -The Connector Problem.			
II	Connectivity.	6	18	Chalk & Talk,
	Blocks (Applications).	6		PPTs, Quiz,
	Construction of Reliable Communication	6		Exercise
	Networks.			
III	Euler Tours and Hamilton Cycles.	6	18	Chalk & Talk, PPTs, Exercise,
	The Chinese Postman Problem.	6]	Quiz
	The Travelling Salesman Problem.	6		
IV	Directed Graphs - Directed Paths - Directed	6	18	Chalk & Talk,
	Cycles (Applications)			Exercise PPTs,
	A Job sequencing Problem-Designing an	6]	Quiz, seminar
	Efficient Computer Drum			
	Making a Road System One-way Ranking	6		
	the Participants in Tournament			
	Flows-Cuts-The Max-Flow Min-Cut Theorem	6	18	Chalk & Talk,
	(Applications).			Exercise Quiz
	Menger's Theorems	6		Assignment
	Feasible Flows.	6		PPTs, seminar

Course Designer: Mrs.R.Revathi, Assistant Professor of Mathematics

Department of Mathematics				I M.Sc.	,			
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total
					Hours/week			
II	Core	22OPMA24	Advanced	4	6	25	75	100
			Statistics-I					

Nature of the Course				
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented		

- 1. To enable the students to apply Statistical Techniques in decision making.
- 2. To demonstrate knowledge of probability and distributions.
- 3. To study relationship between some special distributions.
- 4. To make familiarity with statistical methods the business and academic environment.
- 5. To assist the students to conduct a Statistical investigation.

Unit	Course Contents	90 Hours	K Level	CLO
•	Probablity and Distributions Introduction – Set Theory – The Probability Set Function – Conditional Probability and Independence – Random Variables of the Discrete Type – Random Variables of the Continuous Type – Properties of the Distribution Function – Expectation of a Random Variable – Some Special Expectations – Chebyshev's Inequality	18	Up to K4	CLO1
II	Multivariate Distributions Distributions of Two Random Variables – Conditional Distributions and Expectations – The Correlation Coefficient – Independent Random Variables – Extension to Several Random Variables.	18	Up to K4	CLO2
Ш	Some Special Distributions The Binomial and Related Distributions – The Poisson Distribution – The Gamma and Chisquare Distributions – The Normal Distribution – The Bivariate Normal Distribution.	18	Up to K4	CLO3
IV	Distributions of Funcions of Random Variables Sampling Theory – Transformations of Variables of the Discrete Type – Transformations of Variables of Continuous Type – The Beta, t and F Distributions – Extensions of the Change of Variables Technique – Distributions of Order Statistics – The Moment Generating Function Technique – The Distributions of \overline{X} and nS^2/σ^2 – Expectations of Functions of Random Variables	18	Up to K5	CLO4
V	Limiting Distributions Convergence in Distribution – Convergence in Probability – Limiting Moment Generating Functions – The Central Limit Theorem – Some Theorems on Limiting Distributions,	18	Up to K5	CLO5

Robert V.Hogg and Allen T. Craig. *Introduction to Mathematical Statistics*, 5th Edition, Pearson Education (2004).

UNIT	CHAPTER(S)	SECTIONS
I	1	1.1 to 1.10
II	2	2.1 to 2.5
III	3	3.1 to 3.5
IV	4	4.1 to 4.9
V	5	5.1 to 5.5

Books for Reference:

- 1. John .E.Freund, M.T.J.Wilmore *Mathematical statistics*, 7th Edition Prentice Hall of India, (2000.)
- 2. R.S.N.Pillai, Bagavathi Statistics. S.Chand & Company Ltd., (2009).
- 3. S.P.Gupta. Statistical Methods .Sultan Chan & Sons (2004).
- 4. Roger E.kirk(2007), statistics, fifth edition.
- 5. Narayanan Nadar E.,(2007), statistics, second edition.

Web Resources:

- 1. https://www.uibk.ac.at/statistics/personal/janettewalde/lehre/phd_biology/advanced_statistics.pdf
- 2. https://www.researchgate.net/publication/328214659_Book_Advanced_Statistical_Applications

E - Book:

- 1. https://openstax.org/books/introductory-statistics/pages/1-introduction
- 2. http://julio.staff.ipb.ac.id/files/2015/02/Ross 8th ed English.pdf

Pedagogy:

• Chalk and Talk, Power point presentations, Group Discussions, Quiz, Assignment and Seminar

Rationale for nature of Course:

Knowledge and Skill:

Used to describe and analyze phenomena involving uncertainty and variation.

Activities to be given:

Practice to analyze problems .Group Discussion., Seminar & Project.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

CLO.	Course Learning Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CLO1	Investigating the relationship between Probability and Distributions	Up to K4
CLO2	Identify the multivariate Distributions	Up to K4
CLO3	Resolve the test of some special distributions.	Up to K4
CLO4	Analyze the concept of distributions of functions of Random variables.	Up to K5
CLO5	Apply knowledge to the limiting distributions	Up to K5

- K1- Remembering facts with specific answer
- K2- Basic understanding of facts.
- K3- Application oriented
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	3	2	2	2	3
CLO2	3	3	1	2	2	3
CLO3	3	3	2	1	1	3
CLO4	3	3	2	2	2	3
CLO5	3	3	1	2	2	3

1-Basic Level 2- Intermediate Level 3- Advanced Level

Lesson Plan

Unit	Course Content	Hours	90	Mode of
	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		Hours	Teaching
I	Introduction - Set Theory - The Probability Set	6	18	Chalk &
	Function – Conditional Probability and Independence			Talk, Quiz,
	Random Variables of the Discrete Type - Random	6		Exercise
	Variables of the Continuous Type.			
	Properties of the Distribution Function – Expectation of	6		
	a Random Variable – Some Special Expectations –			
	Chebyshev's Inequality			
II	Distributions of Two Random Variables – Conditional	6	18	Chalk &
	Distributions and Expectations.			Talk, PPTs,
	The Correlation Coefficient – Independent Random	6		Quiz,
	Variables Extension to Several Random Variables.	6	_	Exercise
III	The Binomial and Related Distributions – The Poisson	6	18	Chalk &
111	Distribution.	U	10	Talk, PPTs,
	The Gamma and Chisquare Distributions – The Normal	6		Exercise,
	Distribution.	0		Quiz
	The Bivariate Normal Distribution.	6	-	Quil
IV	Sampling Theory – Transformations of Variables of the	6	18	Chalk &
1 V	Discrete Type – Transformations of Variables of	O	10	Talk,
	Continuous Type – The Beta, t and F Distributions.			Exercise
	Sampling Theory – Transformations of Variables of the	6		PPTs, Quiz,
	Discrete Type	o o		seminar
	Transformations of Variables of Continuous Type – The	6		
	Beta,t and F Distributions			
V	Convergence in Distribution – Convergence in	6	18	Chalk &
'	Probability			Talk,
	Limiting Moment Generating Functions.	6	1	Exercise
	The Central Limit Theorem – Some Theorems on		-	Quiz
		6		Assignment
	Limiting Distributions.			PPTs,
				seminar

Course Designer: Mrs.R.Shanmugam, Assistant Professor of Mathematics

Department of Mathematics					I M.Sc.	,		
Sem	Category	Course Code	Course	Credits	Contact	CIA	SE	Total
			Title		Hours/week			
II			Fuzzy	4	6	25	75	100
	DSEC	22OPMADSE2A	Sets and					
			Logic					

Nature of the Course				
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented		

- 1. To understand fundamental of fuzzy set.
- 2. To learn fuzzy set, Arithmetic operation on fuzzy set.
- 3. To understand fuzzy notation
- 4. To know about fuzzy relation.
- 5. To apply fuzzy logic in real world problem.

Unit	Course Content	90 Hours	K-Level	CLO
I	Introduction ,Crisp Sets: An Overview, The Notation of Fuzzy Sets, Basic Concepts of Fuzzy Sets, Classical Logic: An Overview, Fuzzy Logic	18	Up to K4	CLO1
II	General Discussion, Fuzzy Complement, Fuzzy Union, Fuzzy Intersection, Combinations of Operations, General Aggregation Operations.	18	Up to K4	CLO2
III	Crisp and Fuzzy Relations, Binary Relations, Binary Relations On a Single Set, Equivalence and Similarity Relations.	18	Up to K4	CLO3
IV	Compatibility or Tolerance Relations, Orderings	18	Up to K5	CLO4
V	Morphisms, Fuzzy Relation Equations	18	Up to K5	CLO5

Fuzzy Sets, Uncertainty and Information, George J.Klir, Tina A. Folger.

Chapters:

UNIT	CHAPTER(S)	SECTIONS
I	1	1.1 to 1.6
II	2	2.1 to 2.6
III	3	3.1 to 3.4
IV	3	3.5 & 3.6
V	3	3.7 & 3.8

Books for Reference:

- 1) Bhargava A.K *Fuzzy Set Theory Fuzzy Logic and Their Applications*, S.Chand& Company Pvt. Ltd.2013.
- 2) Chennakesava, R. Alavala, Fuzzy Logic and Neural Network Basic Concepts & Applications, New Age International Publishers 2008.
- 3) George J.Klir and Boyuan, Fuzzy sets Fuzzy Logic, Theory and Applications, Prentice Hall of India, 2002.
- 4) George Bojadziev and Maria Bojadziev, Fuzzy Sets, Fuzzy Logic, Applications, 1996.
- **5**) Bhargava A.K. Fuzzy Set Theory Fuzzy Logic and their Applications, 2013.

Web Resources:

- 1.https://cours.etsmtl.ca/sys843/REFS/Books/ZimmermannFuzzySetTheory2001.pdf
- 2. https://link.springer.com/book/10.1007/978-3-642-35221-8
- 3. https://www.b-farhadinia.ir/bfarhadiadmin/file/stdfile/Klir.pdf

E-books:

- 1. https://bookauthority.org/books/beginner-fuzzy-logic-ebooks
- 2. https://www.phindia.com/Books/ShowBooks/NzI/Fuzzy-Sets-and-Fuzzy-Logic
- 3. https://onlinelibrary.wiley.com/doi/book/10.1002/9781119193210

Pedagogy:

Chalk and Talk, Group Discussion, Student Seminar, Spot Test, Assignments, Quiz.

Rationale for Nature of the Course:

Knowledge and Skill

To understand the concept of fuzzy and its application in various field

Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussion and other practical works and also insist them to check the Books for References and web resource

Course Learning Outcomes (CLO):

On successful Completion of the course Students will be able to

CLO	Course Learning Outcomes	Knowledge Level
		(According to
		Bloom's
		Taxonomy)
CLO1	Understand to Examine the Basic Concepts of Crisp sets and Fuzzy sets	Up to K4
CLO2	Describe Fuzzy Operations	Up to K4
CLO3	Understand the concept of Fuzzy Arithmetic	Up to K4
CLO4	Determine the difference between Crisp and Fuzzy Relation	Up to K5
CLO5	Use Fuzzy Relation as tools to Visualize and Simplify	Up to K5

- K1- Remembering and recalling facts with specific answers
- K2- Basic understanding of facts and stating main ideas with general answers
- K3– Application oriented Solving Problems
- K4 –Examining, analyzing, presentation and make inferences with evidences
- K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcome(CLOs) with Program Outcomes(Pos)

CLOs	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	2	2	3	2	2	3
CLO2	1	2	3	2	2	3
CLO3	2	3	2	2	2	1
CLO4	2	2	3	2	2	2
CLO5	2	2	3	2	2	3

- 1 Basic Level
- 2 Intermediate Level
- 3- Advance Level

Lesson Plan:

Units	Course Contents		IRS	Mode of Teaching	
	 Introduction, Crisp Sets 	6		Chalk & Talk	
I	 An Overview: The Notation of Fuzzy Sets. Basic Concepts: Fuzzy Sets, Classical Logic: An Overview, Fuzzy Logic. 	6	18		
	General Discussion, Fuzzy Complement,	6		Chalk & Talk	
	 Fuzzy Union , Fuzzy Intersection 	6	18		
II	 Fuzzy Intersection, Combinations of Operations Combinations of Operations, General Aggregation Operations. 	6			
	Crisp and Fuzzy Relations	6		Chalk & Talk,	
Ш	 Relations, Binary Relations On a Single Set Equivalence and Similarity Relations. 	6 6	18	Spot Test Group Discussion	
	Compatibility	6		Chalk & Talk	
IV	Tolerance RelationsOrderings	6	18		
	M 1:	6		Cl. 11 0 T. 11	
V	MorphismsFuzzy Relation and Equation	9	18	Chalk & Talk Students Seminar	

Course Designer: Mrs. K.Saranya, Assistant Professor of Mathematics

	Department of Mathematics				I M.Sc.,			
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total
					Hours/week			
II	DSEC	22OPMADSE2B	Automata Theory& Formal	4	6	25	75	100
			Languages					

Nature of the Course					
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented			

- 1. To identify different formal language classes and their notation strips.
- 2. To design grammars and recognizes for different formal languages.
- 3. To prove or disperse theories in automata theory using its properties
- 4. To understand the regular expression in UNIX.
- 5. To acquire the idea about regular languages and Pumping Lemma

Unit	Course Content	90 Hours	K Level	CLO
I	Inductive Proofs-Inductions on integers – Mutual inductions The Central Concept of Automata Theory Alphabets and strings-languages	18	Up to K4	CLO1
II	Finite Automata-An informal Picture of finite Automata-The ground Rules- Deterministic finite Automata: Definition of a Deterministic Finite automata-How a FDA Processes Strings.	18	Up to K4	CLO2
III	Regular Expressions and Languages-Building Regular Expressions Finite Automata and Regular Expressions-From DFA'S to Regular Expression-Converting DFA's to Regular Expressions by Eliminating States.	18	Up to K4	CLO3
IV	Applications of Regular Expressions-Regular Expressions in UNIX-Lexical Analysis-Finding Patterns in Text Discovering Laws for Regular Expressions-The Test for a Regular-Expressions Algebraic Law	18	Up toK5	CLO4
V	Properties of Regular Languages-Proving Languages not to be Regular-The Pumping Lemma for Regular Languages-Applications of the Pumping Lemma. Closure Properties of Regular Languages.	18	Up toK5	CLO5

John.E.Hopcroft, Jeffrey D.Ullman. *Introduction to Automata Theory Languages and computation*, Dorling Kindersley (India Pvt. Ltd.,) 2001.

Chapters:

UNIT	CHAPTER(S)	SECTIONS
I	1	1.4 & 1.5
II	2	2.1 & 2.2
III	3	3.1 & 3.2
IV	3	3.3 & 3.4
V	4	4.1 & 4.2

Books for Reference:

- 1. Alexander Meduna, Automata and Languages Springer (2000).
- 2. .Kohavi, ZVI, *Switching And Finite Automata Theory*, Tata McGraw-Hill, 2006.
- 3. ShyamalenduKandar, *Automata Theory and Formal Languages* Dorling Kindersley(India) Pvt.Ltd(2000)
- 4. Debidas gosh, *Introduction to Theory Of Automata, formal languages and computation*, PHI Learning; 21 August 2013
- 5.Pandey, An Introduction to Automata Theory and Formal languages, S.K.Kataria& Sons, 2010

Web Resources:

- 1. https://youtube.com/playlist?list=PLLOxZwkBK52CTVrHjYa7-SpXlEtef1TqL
- 2. https://youtube.com/playlist?list=PLN2vKr_NwAR7PpXMNrq1C3JnCu3e6hwJI

E-books:

- 1. https://www.iitg.ac.in/dgoswami/Flat-Notes.pdf
- 2. https://www.gopalancolleges.com/gcem/course-material/computer-science/course-plan/sem-V/formal-languages-and-automata-theory-10CS56.pdf

Pedagogy:

 Chalk and Talk, Power point presentations, Group Discussions, Quiz, Assignment and Seminar

Rationale for nature of Course:

Knowledge and Skill: Acquire in fundamental understanding of the core concepts in automata theory and formal languages .An ability to design grammars and automata for different languages classes.

Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussion and other practical works and also insist them to check the Books for References and web resource.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

CLO	Course Learning Outcomes	Knowledge Level (According to Bloom's Taxonomy)
CLO1	Understanding the basic properties of formal languages.	UptoK3
CLO2	Utilize the two way finite Automata	Up to K3
CLO3	Analyze the properties of regular sets	Up to K3
CLO4	Present the context free grammars	Up to K4
CLO5	Build the algorithm of DFA's	Up to K4

- K1- Remembering facts with specific answers
- K2- Basic understanding of facts.
- K3- Application oriented
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	3	3	2	2	3
CLO2	3	3	3	2	1	3
CLO3	3	3	3	1	2	3
CLO4	3	2	3	2	2	3
CLO5	3	2	3	2	1	3

1-Basic Level 2- Intermediate Level 3- Advanced Level

Lesson Plan

Unit	Course Content	90	Hours	Mode of Teaching
1	Inductive Proofs-Inductions on integers—	6	18	Lecture, Quiz,
	Mutual inductions The Central Concept of Automata Theory	6		PPT
	Alphabets and strings –languages	6		
II	Finite Automata: An informal Picture of finite	6	18	Lecture, Quiz,
	Automata	6		PPT
	Deterministic finite Automata: Definition of a Deterministic Finite automata The ground RulesHow a FDA Processes	6		
	Strings.			
III	Regular Expressions and Languages-Building	6	18	Lecture, Quiz,
	Regular Expressions Finite Automata and	6		
	Regular Expressions			
	From DFA'S to Regular Expression	6		
	Converting DFA's to Regular Expressions by Eliminating States.			
IV	Applications of Regular Expressions: Regular	6	18	PPT, Lecture
	Expressions in UNIX-Lexical Analysis	6		
	Finding Patterns in Text Discovering Laws for			
	Regular Expressions	6		
	The Test for a Regular Expressions Algebraic			
**	Law		10	T / T / 1
V	Prosperities of Regular Languages: Proving	6	18	Lecture, Tutorial
	Languages not to be Regular	6		
	The Pumping Lemma for Regular Languages			
	Applications of the Pumping Lemma. Closure Properties of Regular Languages.	6		

Course Designer: Mrs.Ponnulakshmi, Assistant Professor of Mathematics

	Department of Mathematics					I M.S	Sc.,	
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total
					Hours/week			
II	IDC	22OPMAID2	TEACHING	2	2	25	75	100
			&					
			RESEARCH					
			APTITUDE					
			PAPER - II					

Nature of the Course					
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented			

- 1. To enhance the employability skill.
- 2. To learn and analyze Information and Communication Technology.
- 3. To analyze data.
- 4.To understand the shortcuts for the competitive exams.
- 5.To gain knowledge about value education.

Unit	Course Content	30 Hours	K Level	CLO
I	Data Interpretations: Sources of data – Acquisition of Data – Discrimination of Data	6	Up to K4	CLO1
П	Data Interpretations: Collection of data – Representation of data -Interpretation of data	6	Up to K4	CLO2
m	Information and communication Technology: (Application of Information Technology in Modern) (World – Data and Information – Value Of Information – Quality) of Information – Aims of Information – Need and Importance) of Information – Role of Information.	6	Up to K4	CLO3
IV	Information and communication Technology: Evolution of Computer – Computer Generations – Structure of Modern Computer – Objectives of ERNET – Terminology Related to Computer.	6	Up to K5	CLO4
V	Higher Education System: Value Education – Scriptural Value System and Operational Value System –Type of Values – Value system and Mental Health – The need of Value Education – Value and Science.	6	Up to K5	CLO5

Upkar's ,UGC NET/JRF/SET Teaching & Research Aptitude (General Paper-I).

UNIT	CHAPTERS	SECTION
I	5	219 to 220
II	5	221 to 247
III	6	248 to 251
IV	6	251 to 263
V	8	308 to 320

Books for Reference:

- 1)R. Gupta's ,*UGC-NETJunior Research Fellowship and Lectureship Exam Paper-1 Teaching and Research Aptitude* .
- 2)Dr. K.Kautilya, UGC Net/Jrf/Set Teaching & Research Aptitude General Paper-1, 1761,
- 3)Oswaal 20 Practice Papers General Paper 1 (Teaching and Research Aptitude): UGC NET/JRF for 2020Examination.

Web Resources:

https://www.upkar.in>

E-Books:

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.scholarify.in%2Fugc-net-study-materials-for-paper-

1%2F&psig=AOvVaw1W10vu2X5bv7m7tR3nkJ8s&ust=1638600886154000&source=i mages&cd=vfe&ved=0CAsQjRxqFwoTCICNmpmGx_QCFQAAAAAdAAAAABAD

Pedagogy:

 Chalk and Talk, Power point presentations, Group Discussions, Quiz, Assignment and Seminar

Rationale for nature of Course:

Knowledge and Skill:

- 1. To get the knowledge of data interpretation and higher education system.
- 2. Use of media and technology in the classroom.

Activities to be given:

Practice latest question papers of various competitive exams.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

No.	Course Learning Outcomes	Knowledge Level (According to Bloom's Taxonomy)	
CLO1	Understand the concept of Data Interpretations	Up to K4	
CLO2	Classify the interpretations of data	Up to K4	
CLO3	Learn the Information and Communication Technology	Up to K4	
CLO4	Identify the classification of Structure of Modern Computer	Up to K5	
CLO5	To know about the value Education	Up to K5	

- K1- Remembering facts with specific answers
- K2-Basic understanding of facts.
- K3- Application oriented
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	3	2	1	1	3
CLO2	3	3	2	1	1	3
CLO3	3	2	1	2	1	3
CLO4	3	2	1	2	1	3
CLO5	2	3	1	2	2	3

1-Basic Level 2- Intermediate Level 3- Advanced Level

Lesson Plan:

Units	Course Content	30 Hours		Mode of Teaching
I	Sources of Data	2	6	Chalk and
	Acquisition of Data	2 2		Talk, Problem
	Discrimination of Data	2		Solving,
				Tutorial
II	Collection of Data	2	6	Chalk and Talk
	Representation of Data	2		
	Interpretation of Data	2		
	Data and Information	1	6	Chalk and
	Value of Information	1		Talk,
III	Quality of Information	2 2		PPT,Group
	Aims of Information	2		Discussion
IV	Evolution of Computer		6	Chalk and Talk,
1 1	Structure of Modern Computer	2	O	Seminar
	Terminology Related To Computer			PPT, Group
		2 2		Discussion
	Scriptural Value System and Operational Value	2		Chalk and Talk,
	Value System and Mental Health	2	6	Assignment,
V	Value and Science	2		Group
				Discussion
Total Ho	Total Hours			

Course Designer: Mrs.S.Selvi, Assistant Professor of Mathematics