E.M.G. YADAVA WOMEN'S COLLEGE, MADURAI – 625 014.

(An Autonomous Institution – Affiliated to Madurai Kamaraj University)
Re-accredited (3rd Cycle) with Grade A+ & CGPA 3.51 by NAAC

DEPARTMENT OF PHYSICS

TANSCHE-CBCS with OBE

MASTER OF SCIENCE

PROGRAMME CODE - PP

COURSE STRUCTURE

(w.e.f. 2023 – 2023 Batch onwards)

E.M.G.YADAVA WOMEN'S COLLEGE, MADURAI-14.

(An Autonomous Institution – Affiliated to Madurai Kamaraj University) Re-accredited (3^{rd} Cycle) with Grade A^+ and CGPA 3.51 by NAAC

DEPARTMENT OF PHYSICS- PG TANSCHE – CBCS WITH OBE

(w.e.f. 2023 - 2024 onwards)

VISION

To enhance the knowledge of physics in teaching and research through holistic education

MISSION

- ✓ Imparting quality education both in theoretical as well as experimental physics
- ✓ Providing students with rigorous and comprehensive courses that allow them to perform at a high level
- ✓ Striving for excellence in performance based teaching and research

Programme Educational Objectives(PEOs) M.Sc.,

S.No	On completion of the programme ,the student will be able to
PEO1	To Specialize knowledge and expertise to identify formulate, analyze
	and implement on the problems.
PEO2	To pursue higher studies in related fields of physics
PEO3	To enhance leadership quality to handle all kind of circumstances in
	diverse interdisciplinary learning environment
PEO4	To achieve successful employability in private/Government institutions
	or as on entrepreneur
PEO5	To inculcate the sense of ethics and effective communication skills

Programme Outcomes (POs) with Graduate Attributes

S.No	Graduate Attributes	On completion of the programme ,the student will be
		able to
PO1	Knowledge base	Exploration of knowledge and skills in their respective
		disciplines
PO2	Problem Analysis and	Acquire knowledge to analyze and solve problems to
	Investigation	their respective field
PO3	Communication skills	Ability to carry out advance tasks and project
	and design	successfully
PO4	Individual and Team	Adequate project training, research activities in relevant
	work	skill sector and creating employable abilities
PO5	Professionalism, Ethics	Developing socio economic ethics executing their
	and Equality	actions in all their decisions
PO6	Lifelong learning	Lifelong independent and reflective learning skills in
		their career.

Programme Specific Outcomes (POs) with Graduate Attributes

S.No	Graduate Attributes	On completion of the programme ,the student will be
		able to
PSO1	Knowledge base	Develop experimental and data analysis skills through
		laboratory experiments
PSO2	Problem Analysis and	Recognize the importance of mathematical approaches
	Investigation	and computing to describe the concept of physics
PSO3	Communication skills and design	Acquire subject knowledge and caliber sought by
		industry and education field
PSO4	Individual and Team work	Perform independent and group activities of projects to
		experience the aspects of research and to develop their
		presentation
PSO5	Professionalism, Ethics and	Applying professional ethics contributing society to
	Equality	develop equity
PSO6	Lifelong learning	Recognizing the need and lifelong learning to solve real
		life problems

Eligibility for Admission: Pass in B.Sc., Physics

Duration of the Course:

The students shall undergo prescribed courses of study for the period of two academic years under CBCS semester pattern with Outcome Based Education.

Medium of Instruction: English

System: TANSCHE - Choice Based Credit System with Outcome Based Education.

Nature of the Course

Courses are classified according to the following nature

- 1. Knowledge & Skill
- 2. Employability Oriented
- 3. Entrepreneurship Oriented

Outcome Based Education (OBE) & Assessment

Students understanding must be built on and assessed for wide range of learning activities, which includes different approaches and are classified along several bases, such as

1. Based on purpose:

- Formative (Internal tests, Assignment, Seminar, Quiz, Documentation, Case lets, ICT based Assignment, Mini Projects administered during the learning process)
- Summative (Evaluation of students learning at the end of instructional unit)

2. Based on Domain knowledge: (Post Graduate Up to K5 Levels)

• Assessment through K1, K2, K3, K4 & K5

E.M.G.YADAVA WOMEN'S COLLEGE, MADURAI-14.

(An Autonomous Institution – Affiliated to Madurai Kamaraj University) Re-accredited (3rd Cycle) with Grade A⁺ and CGPA 3.51 by NAAC

DEPARTMENT OF PHYSICS- PG TANSCHE – CBCS WITH OBE

(w.e.f. 2023 - 2024 onwards)

EVALUATION

Continuous Internal Assessment Test (CIA) : 25 Marks

Summative Examination : 75 Marks

Total : 100 Marks

CIA-Continuous Internal Assessment: 25 Marks

Components	Marks
Test (Average of two tests)	12
(Conduct for 120 marks and converted into 12 marks)	
Creative Assignment	3
Assignment	5
Seminar	5
Total	25

- Centralized system of Internal Assessment Tests
- There will be a two Internal Assessment Tests
- Duration of Internal Assessment Test I and II will be 2 1/2 hours.
- Students shall write retest on the genuine grounds if they are absent in either Test I & Test II with the approval of Head of the Department.

Question Paper Pattern for Continuous Internal Assessment Test I and Test II

Section	Marks
A – Multiple Choice Questions (8x1Mark)	8
B – Short Answer (6 x 2 Marks)	12
C – Either Or type (4/8 x 5 Marks)	20
D – Open Choice type (2/4 x 10 Marks)	20
Total	60

Conducted for 120 marks and converted into 15 marks

Question Paper Pattern for Summative Examination

Section	Marks
A – Multiple Choice Questions without choice (10x 1Mark)	10
B – Short Answer Questions without choice (5 x 2 Marks)	10
C – Either Or type (5/10 X 5Marks)	25
D – Open Choice type(3out of 5 X 10Marks)	30
Total	75

- In respect of external examinations passing minimum is **45%** for Post Graduate Courses and in total, aggregate of **50%**.
- Latest amendments and revisions as per UGC and TANSCHE Norms are taken into consideration in curriculum preparation.

Distribution of Marks in % with K levels CIA I, II & External Assessment

Blooms Taxonomy	Internal A	External Assessment	
	I	II	
Knowledge (K1	8 %	8 %	5 %
Understanding (K2)	8 %	8 %	14 %
Apply (K3)	24 %	24 %	27%
Analyze (K4)	30 %	30 %	27%
Evaluate (K5)	30%	30%	27%

BLUEPRINT FOR INTERNALASSESSMENT-I

Articulation Mapping –K Levels with Course Learning Outcomes(CLOs)

			Section A		Section	on B	Section C	Section D	
SI.No	CLOs	MCQs Short Answers (No Choice) (No Choice)			(Either or Type)	(Open Choice)	Total		
		X	No. of Questions	K-Level	No. of Questions	K-Level			
1	CLO1	Upto	1	K1	1	K1	1(K3)	1(K4)	
		K5	2	K2	1	К3	1(K5)		
2	CLO2	Upto	2	K1	1	K1	1(K3)	1(K4)	
		K5	1	K2	1	K2	(Each set of questions must be in the same level)	1(K5)	
3.	CLO3	Upto	1	K1	1	K2	1(K4)	1(K5)	
		K5	1	K2	1	К3			
No. o	f Question	s to be	8		6		8	4	26
	f Question swered	is to	8		6		4	2	20
Marks for each question		1		2		5	10		
Total section	Marks for on	each	8		12		40	40	100

BLUEPRINT FOR INTERNALASSESSMENT-II

Articulation Mapping –K Levels with Course Learning Outcomes (CLOs)

			Section A MCQs		Section	on B	Section C	Section D	
		<i>₁</i> el			Short Answ	ers	(Either or Type)	(Open	
	Š	K-Level	(No Choice)		(No Choice)			Choice)	
SI.No	CLOs	×	No. of	K-Level	No. of	K-Level			Total
			Questions		Questions				
1	CLO3	UptoK5	1	K1	1	K1	1(K3)	1(K4)	
			2	K2	1	К3	1(K5)		
2	CLO4	UptoK5	2	K1	1	K1	1(K3)	1(K4)	
			1	K2	1	K2	(Each set of	1(K5)	
							questions must be		
							in		
							The same level)		
3.	CLO5	Upto K5	1	K1	1	K2	1(K4)	1(K5)	
			1	K2	1	К3			
No. c	of Question	s to be asked	8		6		8	4	26
No. c	of Question	s to	8		6		4	2	20
Be answered									
Marks for each question		1		2		5	10		
Total	Marks for	each section	8		12		40	40	100

Distribution of Marks with choice K Levels CIA - I CIA and II-CIA

	K	Section- A	Section -B	Section- C	Section-D		
	Levels	MCQ	(Short	(Either or	(Open	Total Marks	% of
CIA		(No choice)	Answer (No	Type)	Choice)		Marks
			choice))				
	K1	4	4			8	8
I	K2	4	4			8	8
	К3		4	20		24	24
	K4			10	20	30	30
	K5			10	20	30	30
	Marks	8	12	40	40	100	100
	K1	4	4			8	8
	K2	4	4			8	8
II	К3		4	20		24	24
	K4			10	20	30	30
	K5			10		30	30
					20		
	Marks	8	12	40	40	100	100

Articulation Mapping –K Levels with Course Learning Outcomes (CLOs) for Internal Assessment (SEC)

	Sl.No CLOs K-Level		Section A MCQs (No choice)		Section	n B	Section C	Section D	Total
No.					Short Answers (No choice)		(Either/ or Type)	(open choice)	1
Sl.No	CLOs	K-I	No. of Questions	K- Level	No. of Questions	K- Level	- J.P.O.		
1	CLO1	Upto K4	2	K1			2(K3&K3)	1(K3)	
2	CLO2	Upto K4	2	K1			2(K3&K3)	1(K4)	
3	CLO3	Upto K4			2	K2	2(K4&K4)	1(K4)	
4	CLO4	Upto K5			2	K2	2(K5&K5)	1(K5)	
5	CLO5	Upto K5			2	K2		1(K5)	
I	No. of Questions to be asked		4		3		8	5	20
No. of Questions to be answered		4		3		4	2	13	
Ma	Marks for each questions		1		2		5	10	
	tal Marks f tion	or each	4		6		20	20	50 (Marks)

Distribution of Section-wise Marks with K Levels for Internal Assessment (SEC)

K Levels	Section A (MCQ'S) (No choice)	Section B(Short Answer) (No choice)	Section C(Either or Type)	Section D (Open Choice)	Total Marks	% of Marks
K1	4				4	4
K2		6			6	6
К3			20	10	30	30
K4			10	20	30	30
K5			10	20	30	30
Total Marks	4	6	40	50	100	

- K1-Rememberingandrecallingfactswithspecificanswers.
- K2- Basic understanding off acts and stating main ideas with general answers.
- K3-Application oriented Solving Problems, Justifying the statement and deriving inferences
- K4- Examining, analyzing, presentation and make inferences with evidences.
- K5-Evaluating, making Judgments based on criteria

Articulation Mapping -K Levels with Course Learning Outcomes(CLOs) for External Assessment

Sl.No	CLOs	K-Level	MCO	Section A Section B MCQs Short Answers (No choice) (No choice)		Short Answers		Short Answers (No choice)		Section D (open choice)	Total
			No. of	K-	No. of	К-	ype)				
			Questions	Level	Questions	Level					
1	CLO1	Upto K4	2	K1&K2	1	K1	2(K2&K2)	1(K3)			
2	CLO2	Upto K4	2	K1&K2	1	K2	2(K3&K3)	1(K4)			
3	CLO3	Upto K4	2	K1&K2	1	К3	2(K3&K3)	1(K4)			
4	CLO4	Upto K5	2	K1&K2	1	K4	2(K4 &K4)	1(K5)			
5	CLO5	Upto K5	2	K1&K2	1	K5	2(K5 &K5)	1(K5)			
No. c	of Questions	to be asked	10		5		10	5	30		
No. c	of Questions	to be	10		5		5	3	23		
answ	ered										
Mark	s for each q	uestion	1		2		5	10			
Total	Marks for e	each section	10		10		25	30	75 (Marks)		

Distribution of Section-wise Marks with K Levels for External Assessment

K Levels	Section A (MCQ'S) (No choice)	Section B (Short Answer) (No choice)	Section C (Either or Type)	Section D (Open Choice)	Total Marks	% of Marks
K1	5	2	-	-	7	5
K2	5	2	10	-	17	14
К3	-	2	20	10	32	27
K4	-	2	10	20	32	27
K5	-	2	10	20	32	27
Total Marks	10	10	50	50	120	100

- K1-Remembering and recalling facts with specific answers.
- K2- Basic understanding of facts and stating main ideas with general answers.
- K3-Application Oriented Solving Problems, Justifying the statement and deriving inferences
- K4- Examining, analyzing, presentation and make inferences with evidences.
- K5-Evaluating, making Judgments based on criteria

E.M.G.YADAVA WOMEN'S COLLEGE, MADURAI-14.

(An Autonomous Institution – Affiliated to Madurai Kamaraj University) Re-accredited (3^{rd} Cycle) with Grade A^+ and CGPA 3.51 by NAAC

DEPARTMENT OF PHYSICS-PG

TANSCHE - CBCS WITH OBE

(w.e.f. 2023 - 2024 onwards)

M.Sc PHYSICS

COURSE STRUCTURE-SEMESTER WISE

				eek)		N	Iarks al	lotted	
Sem	Category	Course Code	Course Title	Teaching hrs (Per week)	Exam duration (hrs)	C.A	S.E	Total	Credits
	CORE	23OPPH11	Mathematical Physics	7	3	25	75	100	5
	CORE	23OPPH12	Classical Mechanics and Relativity	7	3	25	75	100	5
I	CORE	23OPPH1P	Practical-I	6	3	40	60	100	4
	DSEC		DSEC-I	5	3	25	75	100	3
	DSEC		DSEC-II	5	3	25	75	100	3
	CORE	23OPPH21	Statistical Mechanics	6	3	25	75	100	5
	CORE	23OPPH22	Quantum mechanics-I	6	3	25	75	100	5
II	CORE	23OPPH2P	Practical-II	6	3	40	60	100	4
11	DSEC		DSEC-III	5	3	25	75	100	3
	DSEC		DSEC-IV	5	3	25	75	100	3
	SEC	23OPPHSEC21	Microprocessor 8085 and Microcontroller 8051	2	3	25	75	100	2

DSEC-Discipline Specific Elective Course

Semester I

DSEC-I (Choose any one)

Linear and Digital ICs and Applications -23OPPHDSE1A
 Physics of Nano Science and Technology -23OPPHDSE1B

DSEC-II (Choose any one)

Energy Physics -23OPPHDSE1C
 Communication electronics -23OPPHDSE1D

Semester II

DSEC-III (Choose any one)

Plasma Physics -23OPPHDSE2A
 Advanced Optics -23OPPHDSE2B

DSEC-IV(Choose any one)

Solar Energy Utilization -23OPPHDSE2C
 Bio physics -23OPPHDSE2D

	Department of Physics				Class	: I M.Sc.	,	
Sem	Category	Course Code	Course Title	Credits	Contact Hours / Week	CIA	SE	Total
I	Core	23OPPH11	Mathematical Physics	5	7	25	75	100

Nature of the Course							
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented					
✓							

Course Objectives

- 1. To equip students with the mathematical techniques needed for understanding theoretical treatment in different courses taught in their program.
- 2. To extend their manipulative skills to apply mathematical techniques in their fields.
- 3. To help students apply mathematics in solving problems of Physics.

Course content:

Unit	Course Content	Hours	K Level	CLO
	LINEAR VECTOR SPACE -Basic concepts – Definitions- examples of vector space – Linear independence Scalar product- Orthogonality – Gram-Schmidt	21	Up to K5	CLO 1
I	orthogonalization procedure – linear operators – Dual space- ket and bra notation – orthogonal basis – change of basis – Isomorphism of vector space – projection operator –Eigen values and Eigen functions – Direct sum and invariant subspace			
	– orthogonal transformations and rotation.			
	COMPLEX ANALYSIS-Review of Complex Numbers -de Moivre's theorem- Functions of a Complex Variable- Differentiability -Analytic functions-	21	Up to K5	CLO 2
	Harmonic Functions- Complex Integration- Contour Integration, Cauchy -			
	Riemann conditions – Singular points – Cauchy's Integral Theorem and integral			
II	Formula -Taylor's Series Laurent's Expansion- Zeros and poles - Residue			
	theorem and its Application: Potential theory - (1) Electrostatic fields and			
	complex potentials - Parallel plates, coaxial cylinders and an annular region (2)			
	Heat problems - Parallel plates and coaxial cylinders.			
	MATRICES- Types of Matrices and their properties, Rank of a Matrix -	21		
	Conjugate of a matrix - Adjoint of a matrix - Inverse of a matrix - Hermitian and		Up to	CLO 3
III	Unitary Matrices Trace of a matrix- Transformation of matrices - Characteristic		K5	
	equation - Eigen values and Eigen vectors - Cayley-Hamilton theorem -			
	Diagonalization.			
	FOURIER TRANSFORMS & LAPLACE TRANSFORMS - Definitions -	21	Up to	CLO 4
IV	Fourier transform and its inverse - Transform of Gaussian function and Dirac		K5	
	delta function -Fourier transform of derivatives - Cosine and sine transforms -			

	Convolution theorem. Application: Diffusion equation: Flow of heat in an			
	infinite and in a semi - infinite medium - Wave equation: Vibration of an infinite			
	string and of a semi - infinite string. Laplace transform and its inverse -			
	Transforms of derivatives and integrals - Differentiation and integration of			
	transforms - Dirac delta functions Application - Laplace equation: Potential			
	problem in a semi - infinite strip.			
	DIFFERENTIAL EQUATIONS- Second order differential equation- Sturm-	21		
	Liouville's theory - Series solution with simple examples - Hermite polynomials		Up to	CLO 5
	- Generating function Orthogonality properties - Recurrence relations -		K5	
V	Legendre polynomials Generating function - Rodrigue formula – Orthogonality			
	properties - Dirac delta function- One dimensional Green's function and			
	Reciprocity theorem Sturm-Liouville's type equation in one dimension & their			
	Green's function.			

Book for study:

- George Arfken and Hans J Weber, 2012, Mathematical Methods for Physicists A Comprehensive Guide (7th edition), Academic press.
- 2. P.K. Chattopadhyay, 2013, *Mathematical Physics* (2nd edition), New Age, New Delhi
- A W Joshi, 2017, Matrices and Tensors in Physics, 4th Edition (Paperback), New Age International Pvt. Ltd., India
- 4. B. D. Gupta, 2009, Mathematical Physics (4th edition), Vikas Publishing House, New Delhi.
- 5. H. K. Dass and Dr. Rama Verma, 2014, Mathematical Physics, Seventh Revised Edition, S. Chand & Company Pvt. Ltd., New Delhi.

Books for Reference:

- 1. E. Kreyszig, 1983, Advanced Engineering Mathematics, Wiley Eastern, New Delhi,
- 2. D. G. Zill and M. R. Cullen, 2006, Advanced Engineering Mathematics, 3rd Ed. Narosa, New Delhi.
- 3. S. Lipschutz, 1987, Linear Algebra, Schaum's Series, McGraw Hill, New York 3. E. Butkov, 1968, Mathematical Physics Addison Wesley, Reading, Massachusetts.
- 4. P. R. Halmos, 1965, Finite Dimensional Vector Spaces, 2nd Edition, Affiliated East West, New Delhi.
- C. R. Wylie and L. C. Barrett, 1995, Advanced Engineering Mathematics, 6 th Edition, International Edition, McGraw-Hill, New York

Web Resources/ e-Books:

- 1. www.khanacademy.org
- 2. https://youtu.be/LZnRlOA1_2I
- 3. http://hyperphysics.phy-astr.gsu.edu/hbase/hmat.html#hmath
- 4. https://www.youtube.com/watch?v=_2jymuM7OUU&list=PLhkiT_RYTEU27vS_SlED56gNjVJGO2qaZ

5. https://archive.nptel.ac.in/courses/115/106/115106086/

Pedagogy:

Chalk and Talk, Power point presentations, Group Discussions, Quiz, Assignment and Seminar.

Rationale for Nature of the course:

Obtain the mathematical skill to solve physical problems

Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussion and other practical works and also insist them to check the Books for References and web resources.

Course Learning Outcome (CLOs)

On the successful completion of the course. Students will be able to

CO	Course Outcome	K-level
CO1	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them	Up to K5
CO2	Able to understand analytic functions, do complex integration, by applying Cauchy Integral Formula. Able to compute many real integrals and infinite sums via complex integration.	Up to K5
CO3	Analyze characteristics of matrices and its different types, and the process of diagonalization.	Up to K5
CO4	Solve equations using Laplace transform and analyze the Fourier transformations of different function, grasp how these transformations can speed up analysis and correlate their importance in technology	Up to K5
CO5	To find the solutions for physical problems using linear differential equations and to solve boundary value problems using Green's function. Apply special functions in computation of solutions to real world problems	Up to K5

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	3	3	3	3	2
CLO2	2	3	3	3	3	2
CLO3	3	3	3	2	2	2
CLO4	3	3	3	3	2	2
CLO5	3	2	3	3	2	2

1-Basic Level 2- Intermediate Level 3.Advanced Level

LESSON PLAN: TOTAL HOURS (105 Hrs)

Unit	Description	Hours	Mode
	Basic concepts – Definitions- examples of vector space – Linear independence	21	Chalk &
	Scalar product- Orthogonality – Gram-Schmidt orthogonalization procedure –		Talk,
I	linear operators – Dual space- ket and bra notation – orthogonal basis – change		Seminar and
	of basis - Isomorphism of vector space - projection operator -Eigen values		Group
	and Eigen functions - Direct sum and invariant subspace - orthogonal		Discussion
	transformations and rotation		
	COMPLEX ANALYSIS-Review of Complex Numbers -de Moivre's theorem-	21	Chalk &
II	Functions of a Complex Variable- Differentiability -Analytic functions-		Talk,
	Harmonic Functions- Complex Integration- Contour Integration, Cauchy -		Seminar and
	Riemann conditions – Singular points – Cauchy's Integral Theorem and integral		Group
	Formula -Taylor's Series Laurent's Expansion- Zeros and poles - Residue		Discussion
	theorem and its Application: Potential theory - (1) Electrostatic fields and		
	complex potentials - Parallel plates, coaxial cylinders and an annular region (2)		
	Heat problems - Parallel plates and coaxial cylinders		
	MATRICES :Types of Matrices and their properties, Rank of a Matrix -	21	PPT, Chalk
III	Conjugate of a matrix - Adjoint of a matrix - Inverse of a matrix - Hermitian and		& Talk,
	Unitary Matrices Trace of a matrix- Transformation of matrices - Characteristic		Seminar and
	equation - Eigen values and Eigen vectors - Cayley-Hamilton theorem -		Group
	Diagonalization		Discussion
	FOURIER TRANSFORMS & LAPLACE TRANSFORMS - Definitions -	21	Chalk &
IV	Fourier transform and its inverse - Transform of Gaussian function and Dirac		Talk,
	delta function -Fourier transform of derivatives - Cosine and sine transforms -		Seminar and
	Convolution theorem. Application: Diffusion equation: Flow of heat in an infinite		Group
	and in a semi - infinite medium - Wave equation: Vibration of an infinite string		Discussion
	and of a semi - infinite string. Laplace transform and its inverse - Transforms of		
	derivatives and integrals – Differentiation and integration of transforms - Dirac		
	delta functions Application - Laplace equation: Potential problem in a semi -		
	infinite strip		
	DIFFERENTIAL EQUATIONS- Second order differential equation- Sturm-		Chalk &
V	Liouville's theory - Series solution with simple examples - Hermite polynomials	21	Talk,
	- Generating function Orthogonality properties - Recurrence relations -		Seminar and
	Legendre polynomials Generating function - Rodrigue formula – Orthogonality		Group
	properties - Dirac delta function- One dimensional Green's function and		Discussion
	Reciprocity theorem Sturm-Liouville's type equation in one dimension & their		
	Green's function.		

	Department of Physics				Class	: I M.Sc.	,	
Sem	Category	Course Code	Course Title	Credits	Contact Hours /	CIA	SE	Total
					Week			
I	Core	23OPPH12	Classical Mechanics and	5	7	25	75	100
			Relativity					

Nature of the Course							
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented					
✓							

Course Objectives

- 1. To study the Lagrangian methods.
- 2. To learn about the central field motion.
- 3. To study the Hamiltonian formulations.
- 4. To study the mechanics of small oscillations.
- 5. To learn about Hamilton Jacobi Theory.

Course content:

Unit	Course Content	Hours	K Level	CLO
I	Mechanics of a single particle – mechanics of a system of particles – conservation laws for a system of particles – constraints – holonomic & non-holonomic constraints – generalized coordinates – configuration space – transformation equations – principle of virtual work.	21	Up to K5	CLO 1
II	D'Alembert's principle – Lagrangian equations of motion for conservative systems – applications: (i) simple pendulum (ii) Atwood's machine (iii) projectile motion.	21	Up to K5	CLO 2
III	Phase space – cyclic coordinates – conjugate momentum – Hamiltonian function – Hamilton's canonical equations of motion – applications: (i) simple pendulum (ii) one dimensional simple harmonic oscillator (iii) motion of particle in a central force field.	21	Up to K5	CLO 3
IV	Formulation of the problem – transformation to normal coordinates – frequencies of normal modes – linear triatomic molecule.	21	Up to K5	CLO 4
V	Inertial and non-inertial frames – Lorentz transformation equations – length contraction and time dilation – relativistic addition of velocities – Einstein's mass-energy relation – Minkowski's space – four vectors – position, velocity, momentum, acceleration and force in for vector notation and their transformations	21	Up to K5	CLO 5

Book for study:

- 1. H. Goldstein, 2002, Classical Mechanics, 3rd Edition, Pearson Edu.
- 2. J. C. Upadhyaya, Classical Mechanics, Himalaya Publshing. Co. New Delhi.
- 3. R. Resnick, 1968, *Introduction to Special Theory of Relativity*, Wiley Eastern, New Delhi.
- 4. R. G. Takwala and P.S. Puranik, Introduction to Classical Mechanics Tata McGraw Hill, New Delhi, 1980.
- 5. N. C. Rana and P.S. Joag, Classical Mechanics Tata McGraw Hill, 2001

Books for Reference:

- 1. K. R. Symon, 1971, *Mechanics*, Addison Wesley, London.
- 2. S. N. Biswas, 1999, Classical Mechanics, Books & Allied, Kolkata.
- 3. Gupta and Kumar, Classical Mechanics, Kedar Nath.
- 4. T.W.B. Kibble, Classical Mechanics, ELBS.
- 5. Greenwood, Classical Dynamics, PHI, New Delhi.

Web Resources/E-Books:

- 1. http://poincare.matf.bg.ac.rs/~zarkom/Book_Mechanics_Goldst ein_Classical_Mechanics_optimized.pdf
- 2. https://pdfcoffee.com/classical-mechanics-j-c-upadhyay-2014editionpdf-pdf-free.html
- 3. https://nptel.ac.in/courses/122/106/122106027/
- 4. https://ocw.mit.edu/courses/physics/8-09-classical-mechanicsiii-fall-2014/lecture-notes/
- 5. https://www.britannica.com/science/relativistic-mechanics

Pedagogy:

Chalk and Talk, Power point presentations, Group Discussions, Quiz, Assignment and Seminar.

Rationale for Nature of the course:

In this course, Classical Mechanics which is the study of macroscopic mechanical systems is considered from different perspectives of Lagrangian and Hamiltonian methods. Practical applications of these general principles towards simple problems of oscillatory systems, rigid bodies would enhance comprehension of the principles of Classical Mechanics and develop the skills necessary to analyze the behavior of the mechanical systems based on variety of mathematical methods of Classical Mechanics

Activities to be given

- 1. To practice the students to solve the problems in Lagarangian methods.
- 2. Enhancing the students to solve the problems related to Hamiltonian formulations.

Course Learning Outcome (CLOs)

On the successful completion of the course. Students will be able to

СО	Course Learning Outcomes	K-level
CO1	Understand the fundamentals of classical mechanics.	Up to K5
CO2	Apply the principles of Lagrangian and Hamiltonian mechanics to solve the equations of motion of physical systems.	Up to K5
CO3	Apply the principles of Lagrangian and Hamiltonian mechanics to solve the equations of motion of physical systems.	Up to K5
CO4	Analyze the small oscillations in systems and determine their normal modes of oscillations.	Up to K5
CO5	Understand and apply the principles of relativistic kinematics to the mechanical systems.	Up to K5

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	3	3	3	2	2
CO2	2	3	3	3	2	2
CO3	2	3	3	3	2	2
CO4	2	3	3	3	2	2
CO5	2	3	3	3	2	2

1-Basic Level 2- Intermediate Level 3.Advanced Level

LESSON PLAN: TOTAL HOURS (105 Hrs)

Unit	Description	Hours	Mode
I	Mechanics of a single particle – mechanics of a system of particles – conservation laws for a system of particles – constraints – holonomic & non-holonomic constraints – generalized coordinates – configuration space – transformation equations – principle of virtual work.	21	Chalk & Talk, Seminar and Group Discussion
II	D'Alembert's principle – Lagrangian equations of motion for conservative systems – applications: (i) simple pendulum (ii) Atwood's machine (iii) projectile motion.	21	Chalk & Talk, Seminar and Group Discussion
III	Phase space – cyclic coordinates – conjugate momentum – Hamiltonian function – Hamilton's canonical equations of motion – applications: (i) simple pendulum (ii) one dimensional simple harmonic oscillator (iii) motion of particle in a central force field.	21	PPT, Chalk & Talk, Seminar and Group Discussion
IV	Formulation of the problem – transformation to normal coordinates – frequencies of normal modes – linear triatomic molecule.	21	Chalk & Talk, Seminar and Group Discussion
V	Inertial and non-inertial frames – Lorentz transformation equations – length contraction and time dilation – relativistic addition of velocities – Einstein's mass-energy relation – Minkowski's space – four vectors – position, velocity, momentum, acceleration and force in for vector notation and their transformations	21	Chalk & Talk, Seminar and Group Discussion

	Department of Physics			Class	: I M.Sc.	,		
Sem	Category	Course Code	Course Title	Credits	Contact Hours /	CIA	SE	Total
					Week			
I	Core	23OPPH1P	Practical-I	4	6	40	60	100

Nature of the Course					
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented			
✓					

Course Objectives

- 1. To expose the students to experiments in the Mathematical modeling, optics, and properties of matter.
- 2. To expose the students to understand the fundamental concepts of diode, OP-AMP and ICs for the application of various instruments with practical observations.

List of Experiments: (Any Twelve Experiments)

- 1. Determination of Young's modulus and Poisson's ratio by Hyperbolic fringes Cornu's Method
- 2. Determination of Viscosity of the given liquid Meyer's disc 3. Measurement of Coefficient of linear expansion- Air wedge Method 4. B-H loop using Anchor ring.
- 5. Determination of Thickness of the enamel coating on a wire by diffraction
- 6. Determination of Rydberg's Constant Hydrogen Spectrum
- 7. FP Etalon
- 8. Determination of Thickness of air film. Solar spectrum Hartmann's formula. Edser and Butler fringes.
- 9. Measurement of Band gap energy- Thermistor
- 10. Determination of Planck Constant LED Method
- 11. Determination of Specific charge of an electron Thomson's method.
- 12. Determination of Compressibility of a liquid using Ultrasonics
- 13. Determination of Wavelength, Separation of wavelengths Michelson Interferometer
- 14. GM counter Characteristics, inverse square law and absorption coefficient.
- 15. Measurement of Conductivity Four probe method.
- 16. Arc spectrum Iron.
- 17. Molecular spectra AlO band.
- 18. Measurement of wavelength of Diode Laser / He Ne Laser using Diffraction grating.
- 19. Determination of Diffraction pattern of light with circular aperture using Diode/He-Ne laser.
- 20. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser.

- 21. Measurements of Standing wave and standing wave co-efficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern Microwave test bench
- 22. UV-Visible spectroscopy Verification of Beer-Lambert's law and identification of wavelength maxima Extinction coefficient.
- 23. Construction of relaxation oscillator using UJT
- 24. FET CS amplifier –frequency response, input impedance, output impedance
- 25. Study of important electrical characteristics of IC741
- 26. V- I Characteristics of different colours of LED.
- 27. Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp.
- 28. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp.
- 29. Construction of Schmidt trigger circuit using IC 741 for a given hysteresis- application as squarer.
- 30. Construction of square wave Triangular wave generator using IC 741
- 31. Construction of a quadrature wave using IC 324
- 32. Construction of pulse generator using the IC 741 application as frequency divider
- 33. Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type)
- 34. Study of Binary to Gray and Gray to Binary code conversion.
- 35. Study of R-S, clocked R-S and D-Flip flop using NAND gates
- 36. Study of J-K, D and T flip flops using IC 7476/7473
- 37. Arithmetic operations using IC 7483- 4-bit binary addition and subtraction.
- 38. Study of Arithmetic logic unit using IC 74181.
- 39. Construction of Encoder and Decoder circuits using ICs.

Book for Study:

- 1. Practical Physics, Gupta and Kumar, Pragati Prakasan.
- 2. Kit Developed for doing experiments in Physics- Instruction manual, R. Srinivasan K.R Priolkar, Indian Academy of Sciences.
- 3. Electronic Laboratory Primer a design approach, S. Poornachandra, B. Sasikala, Wheeler Publishing, New Delhi.
- 4. Electronic lab manual Vol I, K ANavas, Rajath Publishing.
- 5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition

Book for Reference:

- 1. Advanced Practical Physics, S.P Singh, PragatiPrakasan.
- 2. An advanced course in Practical Physics, D. Chattopadhayay, C.R Rakshit, New Central Book Agency Pvt. Ltd
- 3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern Economy Edition.
- 4. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. Ltd.
- 5. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing.

Pedagogy: Demonstration and practical sessions

COURSE OUTCOMES:

On the successful completion of the course. Students will be able to

CO	Course Outcomes	K Level
CO1	Understand the strength of material using Young's modulus.	Up to K5
CO2	Acquire knowledge of thermal behaviour of the matetials.	Up to K5
CO3	Understand theoretical principles of magnetism through the experiments.	Up to K5
CO4	Acquire knowledge about arc spectrum and applications of laser	Up to K5
CO5	Improve the analytical and observation ability in Physics Experiments	Up to K5

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	2	3	2	2
CO2	2	2	3	3	3	3
CO3	3	3	3	3	3	3
CO4	3	2	3	3	3	3
CO5	3	3	3	3	3	3

1-Basic Level 2- Intermediate Level 3.Advanced Level

LESSON PLAN: TOTAL HOURS (90 Hrs)

Unit	Description	Hours	Mode
	1. Determination of Young's modulus and Poisson's ratio by Hyperbolic fringes -		
I	Cornu's Method		Demonstration
1	2. Determination of Viscosity of the given liquid – Meyer's disc	18	and practical
	3. Measurement of Coefficient of linear expansion- Air wedge Method		sessions
	4. B-H loop using Anchor ring.		
	5. Determination of Thickness of the enamel coating on a wire by diffraction		
	6. Determination of Rydberg's Constant - Hydrogen Spectrum		
	7. FP Etalon		
	8. Determination of Thickness of air film Solar spectrum – Hartmann's		
	formula. Edser and Butler fringes.		
	9. Measurement of Band gap energy- Thermistor	18	Demonstration
II	10. Determination of Planck Constant – LED Method		and practical
	11. Determination of Specific charge of an electron – Thomson's method.		sessions
	12. Determination of Compressibility of a liquid using Ultrasonics		
	13. Determination of Wavelength, Separation of wavelengths - Michelson Interferometer .		
	14. GM counter – Characteristics, inverse square law and absorption coefficient.		
	15. Measurement of Conductivity - Four probe method.		
	16. Arc spectrum – Iron.		
	17. Molecular spectra – AlO band.	18	Demonstration
III	18. Measurement of wavelength of Diode Laser / He – Ne Laser using		and practical
	Diffraction grating.		sessions
	19. Determination of Diffraction pattern of light with circular aperture using		
	Diode/He-Ne laser.		
	20. Study the beam divergence, spot size and intensity profile of Diode/He-Ne		
	laser.		
	21. Measurements of Standing wave and standing wave co-efficient, Law of		
	Inverse square, Receiver end transmitter behavior, Radiation Pattern - Microwave		
	test bench		
	22. UV-Visible spectroscopy – Verification of Beer-Lambert's law and		
	identification of wavelength maxima – Extinction coefficient.		
	23. Construction of relaxation oscillator using UJT		
	24. FET CS amplifier – frequency response, input impedance, output impedance		

	25. Study of important electrical characteristics of IC741	18	Demonstration
IV	26. V- I Characteristics of different colours of LED.		and practical
	27. Study of attenuation characteristics of Wien's bridge network and design of		sessions
	Wien's bridge oscillator using Op-Amp.		
	28. Study of attenuation characteristics of Phase shift network and design of		
	Phase shift oscillator using Op-Amp.		
	29. Construction of Schmidt trigger circuit using IC 741 for a given hysteresis-		
	application as squarer.		
	30. Construction of square wave Triangular wave generator using IC 741		
	31. Construction of a quadrature wave using IC 324		
	32. Construction of pulse generator using the IC 741 – application as frequency		
	divider		
	33. Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted		Demonstration
V	and R/2R ladder type).		and practical
	34. Study of Binary to Gray and Gray to Binary code conversion.	18	sessions
	35. Study of R-S, clocked R-S and D-Flip flop using NAND gates		
	36. Study of J-K, D and T flip flops using IC 7476/7473		
	37. Arithmetic operations using IC 7483- 4-bit binary addition and subtraction.		
	38. Study of Arithmetic logic unit using IC 74181.		
	39. Construction of Encoder and Decoder circuits using ICs.		

		Departme	nt of Physics		C	lass: I M.Sc.	.,	
Sem	Category	Course Code	Course Title	Credits	Contact Hours	CIA	SE	Total
					/ Week			
I	DSEC	23OPPHDSE1A	Linear and Digital ICs and Applications	3	5	25	75	100

Nature of the Course					
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented			
✓					

Course Objectives

- 1. To introduce the basic building blocks of linear integrated circuits.
- 2. To teach the linear and non-linear applications of operational amplifiers.
- 3. To introduce the theory and applications of PLL.
- 4. To introduce the concepts of waveform generation and introduce one special function ICs.
- 5. Exposure to digital IC's.

Course Content:

Unit	Course Content	Hours	K Level	CLO
	INTEGRATED CIRCUITS AND OPERATIONAL AMPLIFIER -	15	Up to K5	CLO 1
,	Introduction, Classification of IC's, basic information of Op-Amp 741		1	
I	and its features, the ideal Operational amplifier, Op-Amp internal circuit			
	and Op-Amp. Characteristics.			
	APPLICATIONS OF OP-AMP LINEAR APPLICATIONS OF OP-	15	Up to K5	CLO 2
	AMP: Solution to simultaneous equations and differential equations,		1	
	Instrumentation amplifiers, V to I and I to V converters. NON-LINEAR			
II	APPLICATIONS OF OP-AMP: Sample and Hold circuit, Log and			
	Antilog amplifier, multiplier and divider, Comparators, Schmitt trigger,			
	Multivibrators, Triangular and Square waveform generators.			
	ACTIVE FILTERS & TIMER AND PHASE LOCKED LOOPS	15		
	ACTIVE FILTERS: Introduction, Butterworth filters – 1st order, 2nd		Up to K5	CLO 3
	order low pass and high pass filters, band pass, band reject and all pass			
	filters. TIMER AND PHASE LOCKED LOOPS: Introduction to IC			
III	555 timer, description of functional diagram, monostable and astable			
	operations and applications, Schmitt trigger, PLL - introduction, basic			
	principle, phase detector/comparator, voltage controlled oscillator (IC			
	566), low pass filter, monolithic PLL and applications of PLL			

	·			
	VOLTAGE REGULATOR & D to A AND A to D		Up to K5	CLO 4
	CONVERTERS VOLTAGE REGULATOR: Introduction, Series Op-	15	•	
	Amp regulator, IC Voltage Regulators, IC 723 general purpose			
***	regulators, Switching Regulator. D to A AND A to D CONVERTERS:			
IV	Introduction, basic DAC techniques weighted resistor DAC, R-2R ladder			
	DAC, inverted R-2R DAC, A to D converters -parallel comparator type			
	ADC, counter type ADC, successive approximation ADC and dual slope			
	ADC, DAC and ADC Specifications.			
	CMOS LOGIC, COMBINATIONAL CIRCUITS USING TTL	15		
	74XX ICs & SEQUENTIAL CIRCUITS USING TTL 74XX ICs		Up to K5	CLO 5
	CMOS LOGIC: CMOS logic levels, MOS transistors, Basic CMOS			
	Inverter, NAND and NOR gates, CMOS AND-OR-INVERT and			
	ORAND-INVERT gates, implementation of any function using CMOS			
	logic. COMBINATIONAL CIRCUITS USING TTL 74XX ICs: Study			
V	of logic gates using 74XX ICs, Four-bit parallel adder (IC 7483),			
	Comparator (IC 7485), Decoder (IC 74138, IC 74154), BCD to 7-			
	segment decoder (IC7447), Encoder (IC74147), Multiplexer (IC74151),			
	Demultiplexer (IC 74154). SEQUENTIAL CIRCUITS USING TTL			
	74XX ICs: Flip Flops (IC 7474, IC 7473), Shift Registers, Universal			
	Shift Register (IC 74194), 4- bit asynchronous binary counter (IC 7493).			
	1	1	l	

Book for study:

- 1. D. Roy Choudhury, Shail B. Jain (2012), Linear Integrated Circuit, 4th edition, New Age International Pvt. Ltd., New Delhi, India
- 2. Ramakant A. Gayakwad, (2012), OP-AMP and Linear Integrated Circuits, 4th edition, Prentice Hall / Pearson Education, New Delhi.
- 3. B.L. Theraja and A.K. Theraja, 2004, A Textbook of Electrical technology, S. Chand & Co.
- 4. V.K. Mehta and Rohit Mehta, 2008, Principles of Electronics, S. Chand & Co, 12th Edition.
- 5. V. Vijayendran, 2008, Introduction to Integrated electronics (Digital & Analog), S. Viswanathan Printers & Publishers Private Ltd, Reprint. V.

Books for Reference:

- 1. Sergio Franco (1997), Design with operational amplifiers and analog integrated circuits, McGraw Hill, New Delhi.
- 2. Gray, Meyer (1995), Analysis and Design of Analog Integrated Circuits, Wiley International, New Delhi.
- 3. Malvino and Leach (2005), Digital Principles and Applications 5th Edition, Tata McGraw Hill, New Delhi
- 4. Floyd, Jain (2009), Digital Fundamentals, 8th edition, Pearson Education, New Delhi.
- 5. Integrated Electronics, Millman & Halkias, Tata McGraw Hill, 17th Reprint (2000)

Web Resources / E-Books

- 1. https://nptel.ac.in/course.html/digital circuits/
- 2. https://nptel.ac.in/course.html/electronics/operational amplifier/
- 3. https://www.allaboutcircuits.com/textbook/semiconductors/chpt7/field-effect-controlled-thyristors/
- 4. https://www.electrical4u.com/applications-of-op-amp/
- 5. https://www.geeksforgeeks.org/digital-electronics-logic-designtutorials/

Pedagogy:

Chalk and Talk, Power point presentations, Group Discussions, Quiz, Assignment and Seminar.

Rationale for Nature of the course:

This course will enable the students to comprehend the theory, concepts, characteristics and working principles of electronic devices like Combinational and Sequential circuits, semiconductors and their applications. The knowledge of various devices acquired by the students will help them to design, test, troubleshoot the semiconductor diodes, DAC/ADC converter and OPAMP.

Activities to be given

- 1. To upgrade the students to solve the problems.
- 2. Train the students to design and troubleshoot the given circuits.

Course Learning Outcomes(CLOs):

On the successful completion of the course. Students will be able to

CLOs	Course Learning outcomes	K-Level
	Learn about the basic concepts for the circuit configuration for the design of linear integrated circuits and develops skill to solve problems	Up to K5
	Develop skills to design linear and non-linear applications circuits using OpAmp and design the active filters circuits.	Up to K5
	Gain knowledge about PLL, and develop the skills to design the simple circuits using IC 555 timer and can solve problems related to it.	Up to K5
CLO4	Learn about various techniques to develop A/D and D/A converters.	Up to K5
	Acquire the knowledge about the CMOS logic, combinational and sequential circuits	Up to K5

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	2	2
CO2	3	3	3	3	1	3
CO3	3	3	3	3	1	3
CO4	3	3	3	3	1	3
CO5	3	3	3	2	1	1

1-Basic Level 2- Intermediate Level 3.Advanced Level

Lesson Plan: (Total Hours: 75 Hrs)

Units	Course content	Hours	Mode
I	Introduction, Classification of IC's, basic information of Op-Amp 741 and its features, the ideal Operational amplifier-Op-Amp internal circuit and Op-Amp. Characteristics.	15	Chalk and Talk & Seminar
п	LINEAR APPLICATIONS OF OP-AMP: Solution to simultaneous-equations and differential equations-Instrumentation amplifiers, V to I and I to V converters-NON-LINEAR APPLICATIONS OF OP-AMP: Sample and Hold circuit, Log and Antilog amplifier-multiplier and divider, Comparators, Schmitt trigger-Multivibrators, Triangular and Square waveform generators.	15	Chalk and Talk & Seminar
ш	ACTIVE FILTERS: Introduction, Butterworth filters – 1st order, 2nd order low pass and high pass filters-band pass, band reject and all pass filters. Introduction to IC 555 timer, description of functional diagram, monostable and astable operations and applications, Schmitt trigger, PLLintroduction, basic principle, phase detector/comparator, voltage controlled oscillator (IC 566)-low pass filter, monolithic PLL and applications of PLL	15	Chalk and Talk & Seminar
IV	VOLTAGE REGULATOR: Introduction, Series Op-Amp regulator IC Voltage Regulators, IC 723 general purpose regulators, Switching Regulator basic DAC techniques weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC A to D converters -parallel comparator type ADC, counter type ADC Successive approximation ADC and dual slope ADC, DAC and ADC Specifications.	15	Chalk and Talk & Seminar
v	CMOS LOGIC: CMOS logic levels, MOS transistors, Basic CMOS Inverter, NAND and NOR gates, CMOS AND-OR-INVERT and ORAND-INVERT gates, implementation of any function using CMOS logic Study of logic gates using 74XX ICs, Four-bit parallel adder (IC 7483), Comparator (IC 7485), Decoder (IC 74138, IC 74154), Study of logic gates using Shift Registers, Universal Shift Register (IC 74194), 4- bit asynchronous binary counter (IC 7493).	15	Chalk and Talk & Seminar

	Department of Physics				C	lass: I M	I.Sc .,	
Sem	Category	Course Code	Course Title	Credits	Contact Hours / Week	CIA	SE	Total
I	DSEC	23OPPHDSE1B	Physics of Nanoscience and Technology	3	5	25	75	100

Nature of the Course					
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented			
	✓				

Course Objectives:

- 1. Physics of Nanoscience and Technology is concerned with the study, creation, manipulation and applications at nanometer scale.
- 2. To provide the basic knowledge about nanoscience and technology.
- 3. To learn the structures and properties of nanomaterials.
- 4. To acquire the knowledge about synthesis methods and characterization techniques and its applications.

Course Content

Unit	Course Content	Hours	K Level	CLO
I.	FUNDAMENTALS OF NANOSCIENCE AND TECHNOLOGY	15	Up to K5	CLO1
	Fundamentals of NANO – Historical Perspective on Nanomaterial and			
	Nanotechnology — Classification of Nanomaterials – Metal and			
	Semiconductor Nanomaterials - 2D, 1D, 0D nanostructured materials -			
	Quantum dots - Quantum wires - Quantum wells - Surface effects of			
	nanomaterials.			
II.	PROPERTIES OF NANO MATERIALS: Physical properties of	15	Up to	CLO2
	Nanomaterials: Melting points, specific heat capacity, and lattice constant -		K5	
	Mechanical behavior: Elastic properties – strength - ductility - superplastic			
	behavior - Optical properties: - Surface Plasmon Resonance - Quantum size			
	effects - Electrical properties - Conductivity, Ferroelectrics and dielectrics -			
	Magnetic properties – super para magnetism – Diluted magnetic			
	semiconductor (DMS).			
III.	SYNTHESIS AND FABRICATION: Physical vapour deposition -	15	Up to	CLO3
	Chemical vapour deposition - sol-gel - Wet deposition techniques -		K5	
	electrochemical deposition method – Plasma arching – Electro spinning			
	method - ball milling technique - pulsed laser deposition - Nanolithography:			
	photolithography – Nano manipulator.			

IV.	CHARACTERIZATION TECHNIQUES	15	Upto K5	CLO4
	Powder X-ray diffraction – X-ray photoelectron spectroscopy (XPS) - UV-			
	visible spectroscopy – Photoluminescence - Scanning electron microscopy			
	(SEM) - Transmission electron microscopy (TEM) - Scanning probe			
	microscopy (SPM) - Scanning tunneling microscopy (STM) - Vibrating			
	sample Magnetometer.			
V.	APPLICATIONS OF NANOMATERIALS : Sensors: Nanosensors based	15	Upto K5	CLO5
	on optical and physical properties - Electrochemical sensors - Nano-			
	biosensors. Nano Electronics: Nano bots - display screens - GMR read/write			
	heads - Carbon Nano tube Emitters - Photo catalytic application: Air			
	purification, water purification -Medicine: Imaging of cancer cells –			
	biological tags - drug delivery - photodynamic therapy - Energy: fuel cells -			
	rechargeable batteries – super capacitors – photo voltaics.			

Book for study:

- 1. A textbook of Nanoscience and Nanotechnology, Pradeep T., Tata McGraw-Hill Publishing Co. (2012).
- 2. Principles of Nanoscience and Nanotechnology, M.A. Shah, Tokeer Ahmad, Narosa Publishing House Pvt Ltd., (2010).
- 3. Introduction to Nanoscience and Nanotechnology, K. K. Chattopadhyay and A.N. Banerjee, PHI Learning Pvt. Ltd., New Delhi, (2012).
- 4. Nanostructured Materials and Nanotechnology, Hari Singh Nalwa, Academic Press, (2002).
- 5. Nanotechnology and Nanoelectronics, D.P. Kothari,
- 6. V. Velmurugan and Rajit Ram Singh, Narosa Publishing House Pvt. Ltd, New Delhi. (2018)

Books for Reference:

- 1. Nanostructures and Nanomaterials Huozhong Gao Imperial College Press (2004).
- 2. Richard Booker and Earl Boysen, (2005) Nanotechnology, Wiley Publishing Inc. USA
- 3. Nano particles and Nano structured films; Preparation, Characterization and Applications, J. H. Fendler John Wiley and Sons. (2007)
- 4. Textbook of Nanoscience and Nanotechnology, B. S. Murty, et al., Universities Press. (2012)
- 5. The Nanoscope (Encyclopedia of Nanoscience and Nanotechnology),
- 6. Dr. Parag Diwan and Ashish Bharadwaj (2005) Vol. IV Nanoelectronics Pentagon Press, New Delhi.

WEB SOURCES/ E-Books

- 1. www.its.caltec.edu/feyman/plenty.html
- 2. http://www.library.ualberta.ca/subject/nanoscience/guide/index.cfm
- 3. http://www.understandingnano.com
- 4. http://www.nano.gov
- 5. http://www.nanotechnology.com

Pedagogy:

Chalk and Talk, Seminar, Quiz, and Group Discussion.

Rationale for Nature of the course:

Learn about the basic concepts nanoscience and explore the different types of nanomaterials and Explore various physical, mechanical, optical, electrical and magnetic properties nanomaterials.

Activities to be given

- 1. To practice the students to Understand the basic of nanoscience and explore the different types of nanomaterials
- 2. Enhancing the students to Apply the concepts of nanoscience and technology in the field of sensors, robotics, purification of air and water and in the energy devices.

Course Learning Outcomes (CLOs):

On the successful completion of the course. Students will be able to

СО	COURSE LEARNING OUTCOMES	K- Level
CO1	Understand the basic of nanoscience and explore the different types of nanomaterials and should comprehend the surface effects of the nanomaterials.	Up to K5
CO2	Explore various physical, mechanical, optical, electrical and magnetic properties nanomaterials.	Up to K5
CO3	Understand the process and mechanism of synthesis and fabrication of nanomaterials.	Up to K5
CO4	Analyze the various characterization of Nano-products through diffraction, spectroscopic, microscopic and other techniques.	Up to K5
CO5	Apply the concepts of nanoscience and technology in the field of sensors, robotics, purification of air and water and in the energy devices.	Up to K5

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	3	3
CO2	3	3	3	2	3	3
CO3	3	3	2	2	3	3
CO4	3	3	3	2	3	2
CO5	3	3	2	2	3	3

1. Basic level 2. Intermediate level 3. Advance level

Lesson Plan (TOTAL HOURS : 75 hrs)

Units	Course content	Hours	Pedagogy
	Fundamentals of NANO – Historical Perspective on Nano material and		
I	Nanotechnology-Classification of Nano materials – Metal and		
	Semiconductor Nano materials 2D, 1D, 0D nano structured materials -	15	Chalk and Talk
	Quantum dots –Quantum wires-Quantum wells - Surface effects of		& Seminar
	nanomaterials.		
	Nanomaterials: Melting points, specific heat capacity, and lattice		
	constant-Mechanical behavior: Elastic properties – strength - ductility		
II	- super plastic behavior - Optical properties: - Surface Plasmon		
	Resonance – Quantum size effects -Electrical properties -	15	Chalk and Talk
	Conductivity, Ferroelectrics and dielectrics-Magnetic properties –		& Seminar
	super para magnetism – Diluted magnetic semiconductor (DMS).		
	Physical vapour deposition - Chemical vapour deposition - sol-gel-Wet		
III	deposition techniques - electrochemical deposition method-Plasma	15	
	arching – Electro spinning method - ball milling technique-pulsed laser		Chalk and Talk
	deposition-Nanolithography: photolithography – Nano manipulator.		& Seminar
	Powder X-ray diffraction – X-ray photoelectron spectroscopy (XPS)-		
	UV-visible spectroscopy – Photoluminescence-Scanning electron	15	Chalk and Talk
IV	microscopy (SEM) - Transmission electron microscopy (TEM)-		& Seminar
	Scanning probe microscopy (SPM)-Scanning tunneling microscopy		
	(STM)-Vibrating sample Magnetometer.		
	Nanosensors based on optical and physical properties -		
	Electrochemical sensors-Nano-biosensors. Nano Electronics: Nano	15	Chalk and Talk
V	bots - display screens - GMR read/write heads-Carbon Nano tube		& Seminar
	Emitters – Photo catalytic application: Air purification, water		
	purification-Medicine: Imaging of cancer cells – biological tags - drug		
	delivery-photodynamic therapy - Energy: fuel cells - rechargeable		
	batteries super capacitors – photo voltaics.		

Department of Physics					Class: I M.Sc.,			
Sem	Category	Course Code	Course Title	Credits	Contact Hours / Week	CIA	SE	Total
Ι	DSEC	23OPPHDSE1C	Energy Physics	3	5	25	75	100

Nature of the Course						
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented				
	✓					

Course Objectives:

- 1. To learn about various renewable energy sources.
- 2. To know the ways of effectively utilizing the oceanic energy.
- 3. To study the method of harnessing wind energy and its advantages.
- 4. To learn the techniques useful for the conversion of biomass into useful energy.
- 5. To know about utilization of solar energy.

Course Content

Unit	Course Content	Hours	K Level	CLO
I.	INTRODUCTION TO ENERGY SOURCES: Conventional and non-		Up to K5	CLO1
	conventional energy sources and their availability- prospects of Renewable			
	energy sources- Energy from other sources- chemical energy-Nuclear			
	energy- Energy storage and distribution.			
II.	ENERGY FROM THE OCEANS Energy utilization—Energy from tides—	15	Up to K5	CLO2
	Basic principle of tidal power- utilization of tidal energy - Principle of			
	ocean thermal energy conversion systems.			
III.	WIND ENERGY SOURCES: Basic principles of wind energy	15	Up to	CLO3
	conversion-power in the wind-forces in the Blades- Wind energy		K5	
	conversion-Advantages and disadvantages of wind energy conversion			
	systems (WECS) - Energy storage-Applications of wind energy.			
IV.	ENERGY FROM BIOMASS: Biomass conversion Technologies—wet	15	Upto K5	CLO4
	and dry process- Photosynthesis Biogas Generation: Introduction-basic			
	process: Aerobic and anaerobic digestion – Advantages of anaerobic			
	digestion-factors affecting bio digestion and generation of gas- bio gas			
	from waste fuel- properties of biogas-utilization of biogas.			
V.	SOLAR ENERGY SOURCES: Solar radiation and its measurements—	15	Upto K5	CLO5
	solar cells: Solar cells for direct conversion of solar energy to electric			
	powers-solar cell parameter-solar cell electrical characteristics-			
	Efficiency-solar water Heater -solar distillation- solar cooking-solar			
	greenhouse – Solar pond and its applications.			

Book for study:

- 1. G.D. Rai, 1996, Non convention sources of, 4th edition, Khanna publishers, New Delhi.
- 2. S. Rao and Dr. Paru Lekar, Energy technology.
- 3. M.P. Agarwal, Solar Energy, S. Chand and Co., New Delhi (1983).
- 4. Solar energy, principles of thermal collection and storage by S. P. Sukhatme, 2nd edition, Tata McGraw-Hill Publishing Co. Lt., New Delhi (1997).
- 5. Energy Technology by S. Rao and Dr. Parulekar.

Books for Reference:

- Renewable energy resources, John Twidell and Tonyweir, Taylor and Francis group, London and New York.
- 2. Applied solar energy, A. B. Meinel and A. P. Meinal
- 3. John Twidell and Tony Weir, Renewable energy resources, Taylor and Francis group, London and New York.
- 4. Renewal Energy Technologies: A Practical Guide for Beginners C.S. Solanki-PHI Learning
- 5. Introduction to Non-Conventional Energy Resources -Raja et. al., Sci. Tech Publications

WEB SOURCES / E-Books

- 1.https://www.open.edu/openlearn/ocw/mod/oucontent/view.php?id=2411&print able=1
- 2. https://www.nationalgeographic.org/encyclopedia/tidal-energy/
- 3. https://www.ge.com/renewableenergy/wind-energy/what-is-wind-energy
- 4. https://www.reenergyholdings.com/renewable-energy/what-is-biomass/
- 5. https://www.acciona.com/renewable-energy/solar-energy/

Pedagogy:

Chalk and Talk, Seminar, PPT, Quiz, and Group Discussion.

Rationale for Nature of the course:

To learn about various renewable energy sources and to know the ways of effectively utilizing the various types of energy.

Activities to be given

- 1. Students are trained to to identify various forms of renewable and non-renewable energy sources.
- 2. Enhancing the students to understand the components of solar radiation and apply them to utilize solar energy.

Course Learning Outcomes (CLOs):

At the end of the course, the student will be able to:

CO	Course Learning Outcomes	K-Level
CO1	To identify various forms of renewable and non-renewable energy sources	Up to K5
CO2	Understand the principle of utilizing the oceanic energy and apply it for practical applications.	Up to K5
CO3	Discuss the working of a windmill and analyze the advantages of wind energy.	Up to K5
CO4	Distinguish aerobic digestion process from anaerobic digestion.	Up to K5
CO5	Understand the components of solar radiation, their measurement and apply them to utilize solar energy.	Up to K5

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	3	3	3	2	2
CO2	2	3	3	3	2	2
CO3	2	3	3	3	2	2
CO4	2	3	3	3	2	2
CO5	2	3	3	3	2	2

1. Basic level 2. Intermediate level 3.Advance level

Lesson Plan: (TOTAL HOURS: 75 hrs)

Units	Course content	Hours	Pedagogy
I	Conventional and non-conventional energy sources and their availability-prospects of Renewable energy Sources-Energy from other sources—chemical energy-Nuclear energy—Energy storage and distribution.	15	Chalk and Talk & Seminar
II	Energy utilization–Energy from Tides-Basic principle of tidal power-utilization of tidal energy- Principle of ocean thermal energy conversion systems.	15	Chalk and Talk & PPT
Ш	Basic principles of wind energy conversion-power in the wind– forces in the Blades– Wind energy Conversion-Advantages and disadvantages of wind energy conversion systems (WECS)- Energy storage–Applications of wind energy.	15	Chalk and Talk & Seminar
IV	Biomass conversion Technologies— wet and dry process- Photosynthesis Biogas Generation: Introduction—basic process: Aerobic and anaerobic digestion — Advantages of anaerobic digestion-factors affecting bio digestion and generation of gasbio gas from waste fuel-Properties of biogas-utilization of biogas.	15	Chalk and Talk & PPT
V	Solar radiation and its measurements—solar cells: Solar cells for direct conversion of solar energy to electric powers-solar cell parameter—solar cell electrical Characteristics-Efficiency—solar water Heater—solar distillation-solar cooking—solar greenhouse Solar pond and its applications.	15	Chalk and Talk & Seminar

	Department of Physics					ass: I M	I.Sc.,	
Sem	Sem Category Course Code Course Title				Contact Hours / Week	CIA	SE	Total
I	DSEC	23OPPHDSE1D	Communication Electronics	3	5	25	75	100

Nature of the Course					
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented			
	✓				

Course Objectives:

- 1. To understand about antennas and wave propogation.
- 2. To acquire the knowledge about microwaves.
- 3. To understand about radar.
- 4. To study about the optical fiber.
- 5. To acquire the knowledge about the satellite communication.

Course Content

UNIT	Course Content	Hours	K-Level	CLO
I	ANTENNAS AND WAVE PROPAGATION Radiation field and radiation resistance of short dipole antennagrounded antenna-ungrounded antenna-antenna arrays-broadside and end side arrays-antenna gain-directional high frequency antennas-sky wave-ionosphere- Ecles and Larmor theory- Magnento ionic theoryground wave propagation	15	Up to K5	CO1
П	MICROWAVES Microwave generation—multi cavity Klystron-reflex klystronmagnetron travelling wave tubes (TWT) and other microwave tubesMASER-Gunn diode-wave guides-rectangular wave guides-standing wave indicator and standing wave ratio(SWR)	15	Up to K5	CO2
Ш	RADAR AND TELEVISION: Elements of a radar system-radar equation-radar performance Factors radar transmitting systems-radar antennas-duplexers-radar receivers and indicators-pulsed systems-other radar systems- colour TV transmission and reception-colour mixing principle-colour picture tubes- Delta gun picture tube-PIL colour picture tube-cable TV, CCTV and theatre TV energy released in fission – chain reaction – critical reaction – critical size- atom bomb – nuclear reactor – breeder reactor – importance of commissioning PFBR in our country – heavy water disposal, safety of reactors: seismic and floods –introduction to DAE, IAEA – nuclear fusion –thermonuclear reactions – differences between fission and fusion.	15	Up to K5	CO3

IV	OPTICAL FIBER: Propagation of light in an optical fibre-acceptance angle-numerical aperture-step and graded index fibres-optical fibres as a cylindrical wave guide-wave guide equations-wave guide equations in step index fibres - fibre losses and dispersion-applications	15	Upto K5	CO4
V	SATELLITE COMMUNICATION Orbital satellites-geostationary satellites-orbital patterns-satellite system link models-satellite system parameters-satellite system link equation link budget-INSAT communication satellites	15	Upto K5	CO5

- 1. R Handbook of Electronics by Gupta and Kumar, 2008 edition.
- 2. Electronic communication systems George Kennedy and Davis, Tata McGraw Hill, 4th edition, 1988.
- 3. Taub and Schilling, principles of communication systems, second edition, Tata Mc Graw Hill (1991).
- 4. M. Kulkarani, Microwave and radar engineering, Umesh Publications, 1998.
- 5. Mono Chrome and colour television, R. R. Ghulathi.

Books for Reference:

- 1. Electronic communications Dennis Roody and Coolen, Prentice Hall of India, IV edition, 1995.
- 2. Wayne Tomasi, Advanced electronics communication systems, fourth edition, Prentice Hall of India, 1998
- 3. Dennis Roddy and Coolen, 1995, Electronics communications,

Prentice Hall of India IV Edition.

- 4. Wayne Tomasi,1998 "Advanced Electronics communication System" 4th edition, Prentice Hall of India, 1998
- 5. S. Salivahanan, N. Suersh Kumar & A. Vallavaraj, 2009, Electronic Devices and Circuits, Tata McGraw-Hill Publishing Company Limited, New Delhi, Second Edition.

Web Resources / E-Books

- 1. https://www.geeksforgeeks.org/digital-electronics-logic-designtutorials/
- 2. https://www.polytechnichub.com/difference-analog-instrumentsdigital-instruments/
- 3. http://nptel.iitm.ac.in/
- 4. http://web.ewu.edu/
- 5. http://nptel.iitm.ac.in/

Rationale for nature of Course:

Knowledge and Skill: Study of the communication electronics leads to information which is of practical value to the physicist. it gives us information about the satellite communication and radar. students who undergo this course are successfully bound to get a better insight and understanding of the subject.

Activities to be given:

- 1. Enhancing the quality of students to understand about the optical fiber.
- 2. Train the students to understand the theory about satellite communication.

Course Learning Outcomes (CLOs):

At the end of the course, the student will be able to:

		K level
CLO	Course Learning Outcomes	
CLO1	Explain the concepts of antennae and propagation of waves	Up to K5
CLO2	Outline the basic foundation of microwaves	Up to K5
CLO3	Summarize about radar and television	Up to K5
CLO4	Describe about optical fiber	Up to K5
CLO5	Learn about satellite communication	Up to K5

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CL01	3	3	2	3	3	3
CLO2	3	3	2	3	3	3
CLO3	3	3	3	3	3	3
CLO4	3	3	2	3	3	3
CLO5	3	3	3	3	3	3

1-Basic Level 2- Intermediate Level 3- Advanced Level

Lesson Plan: (TOTAL HOURS: 75 Hrs)

Units	Course content	Hours	Mode
I	ANTENNAS AND WAVE PROPAGATION Radiation field and radiation resistance of short dipole antenna grounded antenna-ungrounded antenna-antenna arrays-broadside and end side arrays-antenna gain-directional high frequency antennas-sky wave-ionosphere Ecles and Larmor theory- Magnento ionic theory ground wave propagation	15	Chalk and Talk & PPT
п	MICROWAVES Microwave generation—multi cavity KlystronGunn diode-wave guides-reflex klystron magnetron travelling wave tubes (TWT) and other microwave tubes MASER-rectangular wave guides-standing wave indicator and standing wave ratio(SWR)	15	Chalk and Talk & Seminar
Ш	RADAR AND TELEVISION: Elements of a radar system-radar equation-radar performance Factors radar transmitting systems-radar antennas – chain reaction – critical reaction – critical size- atom bomb – nuclear reactor –breeder reactor –IAEA – nuclear fusion –thermonuclear reactions – differences between fission and fusion-duplexers-radar receivers and indicators-pulsed systems-other radar systems- colour TV transmission and reception-colour mixing principle-colour picture tubes-Delta gun picture tube-PIL colour picture tube-cable TV, CCTV and theatre TV energy released in fission-importance of commissioning PFBR in our country – heavy water disposal, safety of reactors: seismic and floods	15	Chalk and Talk & Seminar
IV	optical Fiber: Propagation of light in an optical fibre-acceptance angle- fibre losses and dispersion-applications-numerical aperture-step and graded index fibres-optical fibres as a cylindrical wave guide wave guide equations-wave guide equations in step index fibres-Ray dispersion in multimode step index fibers – Parabolic index fibers – Fiber fibre losses and dispersion-applications SATELLITE COMMUNICATION Orbital satellites-geostationary	15	Chalk and Talk & PPT Chalk and Talk
V	satellites -satellite system link equation link budget-orbital patterns-satellite system link models-satellite system parameters-INSAT communication satellites	13	& Seminar

	Department of Physics					Class: I I	M.Sc.,	
Sem	Category	Course Code	Course Title	Credits	Contact Hours / Week	CIA	SE	Total
II	Core	23OPPH21	Statistical Mechanics	5	6	25	75	100

Nature of the Course						
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented				
√						

Course Objectives

- 1. To acquire the knowledge of thermodynamic potentials and to understand phase transition in thermodynamics
- 2. To identify the relationship between static and thermodynamic quantities
- 3. To comprehend the concept of partition function, canonical and Grand canonical ensemble
- 4. To grasp the fundamental knowledge about the three types of statics.
- 5. To get in depth knowledge about phase transition and fluctuation of thermodynamic properties vary with time.

Course Content:

Unit	Course Content	Hours	K Level	CLO
I	PHASE TRANSITIONS: Thermodynamic potentials - Phase Equilibrium - Gibb's phase rule - Phase transitions and Ehrenfest's classifications - Third law of Thermodynamics. Order parameters - Landau's theory of phase transition - Critical indices - Scale transformations and dimensional analysis.	18	Up to K5	CLO1
П	STATISTICAL MECHANICS AND THERMODYNAMICS Foundations of statistical mechanics - Specification of states of a system - Micro canonical ensemble - Phase space — Entropy - Connection between statistics and thermodynamics — Entropy of an ideal gas using the micro canonical ensemble - Entropy of mixing and Gibb's paradox.	18	Up to K5	CLO2
III	CANONICAL AND GRAND CANONICAL ENSEMBLES Trajectories and density of states - Liouville's theorem - Canonical and grand canonical ensembles - Partition function - Calculation of statistical quantities - Energy and density fluctuations.	18	Up to K5	CLO3

IV	CLASSICAL AND QUANTUM STATISTICS Density matrix - Statistics of ensembles - Statistics of indistinguishable particles - Maxwell-Boltzmann statistics - Fermi-Dirac statistics - Ideal Fermi gas - Degeneracy - Bose-Einstein statistics - Plank radiation formula - Ideal Bose gas - Bose-Einstein condensation.	18	Upto K5	CLO4
V	REAL GAS, ISING MODEL AND FLUCTUATIONS Cluster expansion for a classical gas - Virial equation of state — Calculation of the first Virial coefficient in the cluster expansion - Ising model - Mean field theories of the Ising model in three, two and one dimensions - Exact solutions in one dimension. Correlation of space-time dependent fluctuations - Fluctuations and transport phenomena - Brownian motion - Langevin's theory - Fluctuation-dissipation theorem - The Fokker-Planck equation	18	Upto K5	CLO5

- 1. S. K. Sinha, 1990, Statistical Mechanics, Tata McGraw Hill, New Delhi.
- 2. B. K. Agarwal and M. Eisner, 1998, Statistical Mechanics, Second Edition New Age International, New Delhi.
- 3. J. K. Bhattacharjee, 1996, Statistical Mechanics: An Introductory Text, Allied Publication, New Delhi.
- 4.F. Reif, 1965, Fundamentals of Statistical and Thermal Physics, McGraw -Hill, New York.
- 5.M. K. Zemansky, 1968, Heat and Thermodynamics, 5th edition, McGraw-Hill New York.

Books for Reference:

- 1. R. K. Pathria, 1996, Statistical Mechanics, 2nd edition, Butter WorthHeinemann, New Delhi.
- 2. L. D. Landau and E. M. Lifshitz, 1969, Statistical Physics, Pergamon Press, Oxford.
- 3. K. Huang, 2002, Statistical Mechanics, Taylor and Francis, London
- 4. W. Greiner, L. Neise and H. Stoecker, Thermodynamics and Statistical Mechanics, Springer Verlang, New York.
- 5. A.B. Gupta, H. Roy, 2002, Thermal Physics, Books and Allied, Kolkata.

Web Resources / E-Books

- 1. https://byjus.com/chemistry/third-law-of-thermodynamics/
- 2. https://web.stanford.edu/~peastman/statmech/thermodynamics.html
- 3. https://en.wikiversity.org/wiki/Statistical_mechanics_and_thermodyna mics
- 4. https://en.wikipedia.org/wiki/Grand_canonical_ensemble
- 5. https://en.wikipedia.org/wiki/Ising_model

Pedagogy:

Chalk and Talk, Seminar, Quiz, Group Discussion

Rationale for Nature of the course:

Thermodynamics and statstical mechanics gives the basic foundations in thermal physics

Activities to be given

Practice the students to solve thermodynamical and Stastical problems

Course Learning Outcomes(CLOs)

On the successful completion of the course. Students will be able to

CLOs	Course Learning outcomes	K - Level
CLO1	Acquire the knowledge of thermodynamic potentials and to	Up to K5
	understand phase transition in thermodynamics	
CLO2	Identify the relationship between stastic and thermodynamic	Up to K5
	quantities	
CLO3	Comprehend the concept of partition function, canonical and	Up to K5
	Grand canonical ensemble	
CLO4	Grasp the fundamental knowledge about the three types of	Up to K5
	stastics	
CLO5	Get in depth knowledge about phase transistion and fluctuation	Up to K5
	of thermodynamic properties vary with time	

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	3	3	2	3	3
CLO2	3	3	2	1	2	3
CLO3	3	3	3	2	3	3
CLO4	3	3	3	3	3	3
CLO5	2	3	3	2	3	3

1. Basic level 2.Intermediate level 3.Advance level

Lesson Plan: (TOTAL HOURS: 90 Hrs)

Units	Course content	Hours	Mode
I	PHASE TRANSITIONS Thermodynamic potentials - Phase Equilibrium - Gibb's phase rule -Phase transitions and Ehrenfest's classifications-Third law of Thermodynamics. Order parameters Landau's theory of phase transition -Critical indices - Scale	18	Chalk and Talk,PPT & Seminar
П	transformations and dimensional analysis STATISTICAL MECHANICS AND THERMODYNAMICS Foundations of statistical mechanics - Specification of states of a system -Micro canonical ensemble - Phase space - Entropy-Connection between statistics and thermodynamics - Entropy of an ideal gas using the micro canonical ensemble-Entropy of mixing and Gibb's paradox.	18	Chalk and Talk, PPT & Seminar
III	CANONICAL AND GRAND CANONICAL ENSEMBLES Trajectories and density of states - Liouville's - Canonical and grand canonical ensembles -theorem Partition function - Calculation of statistical quantities-Energy and density fluctuations	18	Chalk and Talk,PPT & Seminar
IV	CLASSICAL AND QUANTUM STATISTICS Density matrix - Statistics of ensembles - Statistics of indistinguishable particles Maxwell-Boltzmann statistics - Fermi-Dirac statistics- Ideal Fermi gas - Degeneracy - Bose-Einstein statistics - Plank radiation formula Ideal Bose gas - Bose-Einstein condensation.	18	Chalk and Talk,PPT & Seminar
V	REAL GAS, ISING MODEL AND FLUCTUATIONS Cluster expansion for a classical gas - Virial equation of state –coefficient in the cluster expansion - Ising model-Calculation of the first Virial - Meanfield theories of the Ising model in three, two and one dimensions-Exact solutions in one dimension. Correlation of space-time dependent fluctuations -Fluctuations and transport phenomena - Brownian motion - Langevin's theory - Fluctuation-dissipation theorem - The Fokker-Planck equation	18	Chalk and Talk,PPT & Seminar

	Department of Physics					ss: I M.S	Sc.,	
Sem	Sem Category Course Code Course Title Credits			Contact	CIA	SE	Total	
					Hours / Week			
II	Core	23OPPH22	Quantum Mechanics -I	5	6	25	75	100

Nature of the Course					
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented			
√					

Course Objectives

- 1. To develop the physical principles and the mathematical background important to quantum mechanical descriptions
- 2. To describe the propagation of a particle in a simple, one-dimensional potential.
- 3. To formulate and solve the Schrodinger's equation to obtain eigenvectors and energies for particle in a three-dimensional potential.
- 4. To explain the mathematical formalism and the significance of constants of motion, and see their relation to fundamental symmetries in nature
- 5. To discuss the Approximation methods like perturbation theory, Variational and WKB methods for solving the Schrödinger equation.

Course Content:

Unit	Course Content	Hours	K Level	CLO
I	BASIC FORMALISM: Interpretation of the wave function – Time dependent Schrodinger equation – Time independent Schrodinger equation – Stationary states – Ehrenfest's theorem – Linear vector space – Linear operator – Eigen functions and Eigen Values – Hermitian Operator – Postulates of Quantum Mechanics – Simultaneous measurability of observables – General Uncertainty relation	18	Upto K5	CLO1
II	ONE DIMENSIONAL AND THREEDIMENSIONAL	18	Upto	CLO2
	ENERGY EIGEN VALUE PROBLEMS: Square – well potential with rigid walls – Square well potential with finite walls – Square potential barrier – Alpha emission – Bloch waves in a periodic potential – Kronig-penny square – well periodic potential – Linear harmonic oscillator: Operator method – Particle moving in a spherically symmetric potential – System of two interacting particles – Hydrogen atom – Rigid rotator.		K5	

III	GENERAL FORMALISM: Dirac notation – Equations of motions –	18	Upto	CLO3
	Schrodinger representation – Heisenberg representation – Interaction		K5	
	representation - Coordinate representation - Momentum representation -			
	Symmetries and conservation laws - Unitary transformation - Parity and			
	time reversal			
IV	APPROXIMATIO N METHODS: Time independent perturbation theory	18	UptoK5	CLO4
	for non-degenerate energy levels – Degenerate energy levels – Stark effect			
	in Hydrogen atom – Ground and excited state – Variation method – Helium			
	atom – WKB approximation – Connection formulae (no derivation) – WKB			
	quantization – Application to simple harmonic oscillator.			
V	ANGULAR MOMENTUM :Eigenvalue spectrum of general angular	18	UptoK5	CLO5
	momentum - Ladder operators and their algebra - Matrix representation -			
	Spin angular momentum – Addition of angular momenta – CG Coefficients			
	- Symmetry and anti - symmetry of wave functions - Construction of wave-			
	functions and Pauli's exclusion principle.			

- 1. P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanics, 2ndedition(37th Reprint),Tata McGraw-Hill, New Delhi, 2010.
- 2. G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Delhi, 2009.
- 3. David J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 2011.
- 4. SL Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1st Edition, S.Chand& Co., New Delhi, 1982.
- A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4thEdition, Macmillan, India, 1984.

Books for Reference:

- 1. E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New York, 1970.
- 2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, New Delhi, 1985.
- 3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Press, Oxford, 1976.
- 4. S. N. Biswas, Quantum Mechanics, Books and Allied Ltd., Kolkata, 1999.
- 5. V. Devanathan, Quantum Mechanics, 2nd edition, Alpha Science International Ltd, Oxford, 2011.

Web Resources / E-Books

- 1. http://research.chem.psu.edu/lxjgroup/download_files/chem565c7.pdf
- 2. http://www.feynmanlectures.caltech.edu/III_20.html

- 3. http://web.mit.edu/8.05/handouts/jaffe1.pdf
- 4. https://hepwww.pp.rl.ac.uk/users/haywood/Group_Theory_Lectures/ Lecture_ 1.pdf
- 5. https://theory.physics.manchester.ac.uk/~xian/qm/chapter3.pdf

Pedagogy: Chalk and Talk, Seminar, Quiz, Group Discussion

Rationale for Nature of the course:

To understand the basic Quantum mechanics and to explore the physical processes in today's environment.

Activities to be given: Practice the students to solve the quantum mechanical problems.

Course Learning Outcomes(CLOs)

On the successful completion of the course. Students will be able to

CLOs	Course Learning outcomes	K- Level
CLO1	Develop the physical principles and the mathematical background	UptoK5
	important to quantum mechanical descriptions	
CLO2	Describe the propagation of a particle in a simple, one-dimensional	UptoK5
	potential.	
CLO3	Formulate and solve the Schrodinger's equation to obtain	UptoK5
	eigenvectors and energies for particle in a three-dimensional potential	
CLO4	Explain the mathematical formalism and the significance of constants	UptoK5
	of motion, and see their relation to fundamental symmetries in nature	
CLO5	Discuss the Approximation methods like perturbation theory,	UptoK5
	Variational and WKB methods for solving the Schrödinger equation	

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	3	3	2	3	3
CLO2	3	3	2	1	2	3
CLO3	3	3	3	2	3	3
CLO4	3	3	3	3	3	3
CLO5	2	3	3	2	3	3

1. Basic level 2.Intermediate level 3.Advance level

Lesson Plan: (TOTAL HOURS: 90 Hrs)

Units	Course content	Hours	Mode
	BASIC FORMALISM: Interpretation of the wave function – Time		Chalk
	dependent Schrodinger equation —Time independent Schrodinger equation		and Talk &
I	- Stationary states - Ehrenfest's theorem-Linear vector space - Linear	18	Seminar
	operator - Eigen functions and Eigen Values - Hermitian Operator -		
	Postulates of Quantum Mechanics - Simultaneous measurability of		
	observables – General Uncertainty relation		
	ONE DIMENSIONAL AND THREEDIMENSIONAL	18	Chalk
II	ENERGY EIGEN VALUE PROBLEMS: Square – well potential with		and Talk &
	rigid walls - Square well potential with finite walls - Square potential		Seminar
	barrier-Alpha emission – Bloch waves in a periodic potential – Kronig-penny		
	square – well periodic potential-Linear harmonic oscillator: Operator method		
	- Particle moving in a spherically symmetric potential-System of two		
	interacting particles – Hydrogen atom – Rigid rotator		
	CENEDAL FORMALISM D'ALLES EL MANAGEMENT DE LA MANAGEMENT	10	Cl. 11
	GENERAL FORMALISM: Dirac notation – Equations of motions –	18	Chalk and Talk
III	Schrodinger representation -Heisenberg representation - Interaction		&
	representation-Coordinate representation – Momentum representation –		Seminar
	Symmetries and conservation laws-Unitary transformation – Parity and time		
	reversal		
IV	APPROXIMATIO N METHODS : Time independent perturbation theory	18	Chalk and Talk
	for non-degenerate energy levels- Connection formulae (no derivation) -		&
	Degenerate energy levels – Stark effect in Hydrogen atom – Ground and		Seminar
	excited state— Variation method – Helium atom – WKB approximation-		
	WKB quantization – Application to simple harmonic oscillator.		
V	ANGULAR MOMENTUM: Eigenvalue spectrum of general angular	18	Chalk and Talk
	momentum – Ladder operators and their algebra -Matrix representation –		and Tark
	Spin angular momentum -Addition of angular momenta – CG Coefficients -		Seminar
	Symmetry and anti – symmetry of wave functions-Construction of wave-		
	functions and Pauli's exclusion principle.		

Department of Physics			Class	: I M.Sc.	,			
Sem	Category	Course Code	Course Title	Credits	Contact Hours / Week	CIA	SE	Total
					VVCCK			
II	Core	23OPPH2P	Practical-II	4	6	40	60	100

Nature of the Course					
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented			
	✓				

Course Objectives:

- 1. To expose the students to experiments in the Mathematical modeling, optics, and properties of matter.
- 2. To expose the students to understand the fundamental concepts of diode, OP-AMP and ICs for the application of various instruments with practical observations.

List of Experiments: (Any Twelve Experiments)

- Determination of Young's modulus and Poisson's ratio by Elliptical fringes Cornu's Method
- 2. Determination of Stefan's constant of radiation from a hot body
- 3. Measurement of Coefficient of linear expansion- Air wedge Method
- 4. Measurement of Susceptibility of liquid Quincke's method
- 5. B-H curve using CRO
- 6. Measurement of Magnetic Susceptibility Guoy's method
- 7. LG Plate
- 8. Arc spectrum: Copper
- 9. Determination of Solar constant
- 10. Determination of e/m Millikan's method
- 11. Miscibility measurements using ultrasonic diffraction method
- 12. Determination of Thickness of thin film. Michelson Interferometer
- 13. GM Counter-Feather's analysis: Range of Beta Rays.
- 14. Iodine absorption spectra
- 15. Molecular spectra CN bands.
- 16. Determination of Refractive index of liquids using diode Laser/ He-Ne Laser.

- 17. Determinationm of Numerical Apertures and Acceptance angle of optical fibres using Laser Source.
- 18. Measurement of Dielectricity-Microwave test bench
- 19. Hall effect in Semiconductor. Determine the Hall coefficient, carrier concentration and carrier mobility.
- 20. Interpretation of vibrational spectra of a given material.
- 21. Study of Modulus Counter
- 22. Construction of Multiplexer and Demultiplexer using ICs.
- 23. Determination of I-V Characteristics and efficiency of solar cell.
- 24. IC 7490 as scalar and seven segment display using IC7447
- 25. Solving simultaneous equations IC 741 / IC LM324
- 26. Op-Amp –Active filters: Low pass, High pass and Band pass filters (Second Order) Batter worth filter
- 27. Construction of Current to Voltage and Voltage to Current Conversion using IC 741.
- 28. Construction of second order butter worth multiple feedback narrow band pass filter
- 29. Realization of analog to digital converter (ADC) using 4-bit DAC and synchronous counter IC74193
- 30. Construction of square wave generator using IC 555 Study of VCO
- 31. Construction of Schmidt trigger circuit using IC555 for a given hysteresis Application as squarer
- 32. Construction of pulse generator using the IC 555 Application as frequency divider
- 33. BCD to Excess- 3 and Excess 3 to BCD code conversion
- 34. Study of binary up / down counters IC 7476 / IC7473
- 35. Shift register and Ring counter and Johnson counter- IC 7476/IC 7474
- 36. Study of synchronous parallel 4-bit binary up/down counter using IC 74193
- 37. Study of asynchronous parallel 4-bit binary up/down counter using IC 7493

Books for Reference:

- 1.An advanced course in Practical Physics, D. Chattopadhayay, C.R Rakshit, New Central Book Agency Pvt. Ltd
- 2. Advanced Practical Physics, S.P Singh, Pragati Prakasan
- 3.A course on experiment with He-Ne Laser, R. S. Sirohi, John Wiley & Sons (Asia) Pvt. Ltd

Pedagogy

Projector, Demonstration and Practical sessions.

Course Learning Outcomes(CLOs):

At the end of the course the student will be able to:

	Course Learning Outcomes	K Level
CO1	Understand the strength of material using Young's modulus.	Upto K5
CO2	Acquire knowledge of thermal behaviour of the matetials.	Upto K5
	Understand theoretical principles of magnetism through the experiments.	Upto K5
CO4	Acquire knowledge about arc spectrum and applications of laser	Upto K5
CO5	Improve the analytical and observation ability in Physics Experiments	Upto K5

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	2	3	2	2
CO2	2	2	3	3	3	3
CO3	3	3	3	3	3	3
CO4	3	2	3	3	3	3
CO5	3	3	3	3	3	3

1-Basic Level 2- Intermediate Level 3.Advanced Level

LESSON PLAN: TOTAL HOURS (90 Hrs)

Unit	Description	Hours	Mode
I	 Determination of Young's modulus and Poisson's ratio by Elliptical fringes - Cornu's Method Determination of Stefan's constant of radiation from a hot body Measurement of Coefficient of linear expansion- Air wedge Method Measurement of Susceptibility of liquid - Quincke's method B-H curve using CRO Measurement of Magnetic Susceptibility - Guoy's method LG Plate Arc spectrum: Copper 	18	Demonstration and practical sessions
II	9. Determination of Solar constant10. Determination of e/m - Millikan's method11. Miscibility measurements using ultrasonic diffraction method	18	Demonstration and practical sessions

	 12. Determination of Thickness of thin film Michelson Interferometer 13. GM Counter-Feather's analysis: Range of Beta Rays. 14. Iodine absorption spectra 15. Molecular spectra – CN bands. 16. Determination of Refractive index of liquids using diode Laser/ He-Ne Laser. 		
III	17. Determination of Numerical Apertures and Acceptance angle of optical fibres using Laser Source. 18. Measurement of Dielectricity-Microwave test bench 19. Hall effect in Semiconductor. Determine the Hall coefficient, carrier concentration and carrier mobility. 20. Interpretation of vibrational spectra of a given material. 21. Study of Modulus Counter 22. Construction of Multiplexer and Demultiplexer using ICs. 23. Determination of I-V Characteristics and efficiency of solar cell. 24. IC 7490 as scalar and seven segment display using IC7447	18	Demonstration and practical sessions
IV	 25. Solving simultaneous equations – IC 741 / IC LM324 26. Op-Amp – Active filters: Low pass, High pass and Band pass filters (Second Order) Batter worth filter 27. Construction of Current to Voltage and Voltage to Current Conversion using IC 741. 28. Construction of second order butter worth multiple feedback narrow band pass filter 29. Realization of analog to digital converter (ADC) using 4-bit DAC and synchronous counter IC74193 30. Construction of square wave generator using IC 555 – Study of VCO 31. Construction of Schmidt trigger circuit using IC555 for a given hysteresis – Application as squarer 32. Construction of pulse generator using the IC 555 – Application as frequency divider 	18	Demonstration and practical sessions
V	33. BCD to Excess- 3 and Excess 3 to BCD code conversion 34. Study of binary up / down counters - IC 7476 / IC7473 35. Shift register and Ring counter and Johnson counter- IC 7476/IC 7474 36. Study of synchronous parallel 4-bit binary up/down counter using IC 74193 37. Study of asynchronous parallel 4-bit binary up/down counter using IC 7493	18	Demonstration and practical sessions

	Department of Physics				Class:	I M.Sc.,)	
Sem	Category	Course Code	Course Title	Credits	Contact Hours / Week	CIA	SE	Total
**		220000110000	D1 D1 :	2	vveek	2.5		100
11	DSEC	23OPPHDSE2A	Plasma Physics	3	5	25	75	100

Nature of the Course					
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented			
✓					

Course Objectives:

- 1. To understand the cross section of charged particles and to able to correlate the magnetic effect of ion and electrons in plasma state.
- 2. To learn the magneto-hydrodynamics concepts applied to plasma.
- 3. To explore the oscillations and waves of charged particles and thereby apply the Maxwell's equation to quantitative analysis of plasma.
- 4. To analyze the different principle and techniques to diagnostics of plasma.
- 5. To Study the possible applications of plasma by incorporating various electrical and electronic instruments.

Course Content

Unit	Course Content	Hours	K Level	CLO
I.	FUNDAMENTAL CONCEPTS OF PLASMA: Kinetic pressure in a	15	Upto K5	CLO1
	partially ionized - mean free path and collision cross section - Mobility of			
	charged particles - Effect of magnetic field on the mobility of ions and			
	electrons-Thermal conductivity- Effect of magnetic field- Quasi- neutrality			
	of plasma Debye shielding distance - Optical properties of plasma.			
II.	MOTION OF CHARGED PARTICLES IN ELECTRIC AND	15	Upto K5	CLO2
	MAGNETIC FIELD: Particle description of plasma- Motion of charged			
	particle in electrostatic field- Motion of charged particle in uniform			
	magnetic field - Motion of charged particle in electric and magnetic fields-			
	Motion of charged particle inhomogeneous magnetic field - Motion of			
	charged particle in magnetic mirror confinement - motion of an electron in			
	a time varying electric field- Magneto- hydrodynamics - Magneto-			
	hydrodynamic equations - Condition for magneto hydrodynamic behavior.			
III.	PLASMA OSCILLATIONS AND WAVES: Introduction, theory of	15	Upto K5	CLO3
	simple oscillations - electron oscillation in a plasma – Derivations of plasma			
	oscillations by using Maxwell's equation - Ion oscillation and waves in a			
	magnetic field - thermal effects on plasma oscillations - Landau damping -			
	Hydro magnetic waves - Oscillations in an electron beam.			

IV.	PLASMA DIAGNOSTICS TECHNIQUES: Single probe method -	15	Upto K5	CLO4
	Double probe method - Use of probe technique for measurement of plasma			
	parameters in magnetic field - microwave method - spectroscopic method -			
	-laser as a tool for plasma diagnostics-X-ray diagnostics of plasma - acoustic			
	method - conclusion.			
V.	APPLICATIONS OF PLASMA PHYSICS: Magneto hydrodynamic	15	Upto K5	CLO5
	Generator - Basic theory - Principle of Working Fuel in MHD Generator -			
	Generation of Microwaves Utilizing High Density Plasma - Plasma Diode.			

- 1. Plasma Physics- Plasma State of Matter S. N. Sen, Pragati Prakashan, Meerut.
- 2. Introduction to Plasma Physics-M. Uman
- 3. Krall, N. A., and A. W. Trivelpiece. Principles of Plasma Physics. Berkeley, CA: San Francisco Press, 1986. ISBN: 9780911302585.Tanenbaum, B. S. Plasma Physics. New York, NY: McGraw-Hill, 1967. ISBN: 9780070628120.
- 4. Goldston, R. J., and P. H. Rutherford. Introduction to Plasma Physics. Philadelphia, PA: IOP Publishing, 1995. ISBN: 9780750301831.
- 5. Hutchinson, I. H. Principles of Plasma Diagnostics. Cambridge, UK: Cambridge University Press, 2005. ISBN: 9780521675741.

Books for Reference:

- 1. Chen, F. F. Introduction to Plasma Physics. 2nd ed. New York, NY: Springer, 1984. ISBN: 9780306413322.
- 2. Introduction to Plasma Theory-D.R. Nicholson
- 3. Shohet, J. L. The Plasma State. San Diego, CA: Academic Press Inc., 1971. ISBN: 9780126405507.
- 4. Hazeltine, R. D., and F. L. Waelbroeck. The Framework of Plasma Physics. Boulder, CO: Westview Press, 2004. ISBN: 9780813342139.
- Huddlestone, R. H., and S. L. Leonard. Plasma Diagnostic Techniques. San Diego, CA: Academic Press, 1965

Web Resources / E-Books

- 1. https://fusedweb.llnl.gov/Glossary/glossary.html
- 2. http://farside.ph.utexas.edu/teaching/plasma/lectures1/index.html
- 3. http://www.plasmas.org/
- 4. http://www.phy6.org/Education/whplasma.html
- 5. http://www.plasmas.org/resources.htm

Pedagogy: Chalk and Talk, Seminar, PPT, Quiz, and Group Discussion.

Rationale for Nature of the course:

To understand the modern plasma phenomenon in the universe and to explore the physical processes which acquire in the space environment.

Activities to be given:

- 1. To train the students to understand the plasma and learn the magneto-hydrodynamics concepts applied to plasma.
- 2. Enhancing the students to learn the possible applications of plasma by incorporating various electrical and electronic instruments.

Course Learning Outcomes (CLO's):

At the end of the course, the student will be able to:

CLO	Course Learning Outcomes	K - Level
CO1	Understand the collision, cross section of charged particles and to able	Upto K5
	to correlate the magnetic effect of ion and electrons in plasma state.	
CO2	Understand the plasma and learn the magneto-hydrodynamics concepts	Upto K5
	applied to plasma.	
CO3	Explore the oscillations and waves of charged particles and thereby	Upto K5
	apply the Maxwell's equation to quantitative analysis of plasma.	
CO4	Analyze the different principle and techniques to diagnostics of	Upto K5
	plasma.	
CO5	Learn the possible applications of plasma by incorporating various	Upto K5
	electrical and electronic instruments.	

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	1	1	2
CO2	3	3	2	1	1	2
CO3	3	3	2	2	1	2
CO4	3	3	3	2	1	2
CO5	3	3	3	2	1	2

1. Basic level

2. Intermediate level

3.Advance level

Lesson Plan (TOTAL HOURS: 75 Hrs)

Units	Course content	Hours	Mode
	FUNDAMENTAL CONCEPTS OF PLASMA: Kinetic pressure	15	Chalk and
	in a partially ionized - mean free path and collision cross section		Talk &
	Mobility of charged particles - Effect of magnetic field on the		Seminar
I	mobility of ions and electrons-Thermal conductivity- Effect of		
	magnetic field- Quasi-neutrality of plasma Debye shielding distance		
	- Optical properties of plasma.		
	MOTION OF CHARGED PARTICLES IN ELECTRIC AND	15	Chalk and
	MAGNETIC FIELD: Particle description of plasma- Motion of		Talk &
	charged particle in electrostatic field-Motion of charged particle in		Seminar
	uniform magnetic field - Motion of charged particle in electric and		
II	magnetic fields-Motion of charged particle inhomogeneous		
	magnetic field -Motion of charged particle in magnetic mirror		
	confinement - motion of an electron in a time varying electric field-		
	Magneto- hydrodynamics -Magneto-hydrodynamic equations -		
	Condition for magneto hydrodynamic behaviour.		
	PLASMA OSCILLATIONS AND WAVES : Introduction, theory		Chalk and
	of simple oscillations - electron oscillation in a plasma Derivations	15	Talk &
	of plasma oscillations by using Maxwell's equation-Ion oscillation		Seminar
III	and waves in a magnetic field -thermal effects on plasma oscillations		
	- Landau damping -Hydro magnetic waves - Oscillations in an		
	electron beam.		
	PLASMA DIAGNOSTICS TECHNIQUES: Single probe method		
	- Double probe method - Use of probe technique for measurement of	15	Chalk and
IV	plasma parameters in magnetic field -microwave method -		Talk &
	spectroscopic methodlaser as a tool for plasma diagnostics-X-ray		Seminar
	diagnostics of plasma - acoustic method - conclusion.		
	APPLICATIONS OF PLASMA PHYSICS: Magneto		Chalk and
\mathbf{V}	hydrodynamic Generator - Basic theory -Principle of WorkingFuel	15	Talk &
	in MHD Generator-Generation of Microwaves Utilizing High		Seminar
	Density Plasma -Plasma Diode.		

	Department of Physics			Class: I M.Sc.,				
Sem	Category	Course Code	Course Title	Credits	Contact Hours / CIA SE Week			Total
II	DSEC	23OPPHDSE2B	Advanced Optics	3	5	25	75	100

Nature of the Course					
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented			
	✓				

Course Objectives:

- 1. To discuss the transverse character of light waves and different polarization phenomenon.
- 2. To Discriminate all the fundamental processes involved in laser devices and to analyze the design and operation of the devices
- 3. To Study the important characteristics of holograms and its applications.
- 4. To Demonstrate the basic configuration of a fiber optic communication system and advantages
- 5. To Identify the properties of nonlinear interactions of light and matter.

Course Content:

Unit	Course Content	Hours	K Level	CLO
I	POLARIZATION AND DOUBLE REFRACTION: Classification of polarization	15	Upto	CLO1
	- Transverse character of light waves - Polarizer and analyzer - Malu's law -		K5	
	Production of polarized light – Wire grid polarizer and the polaroid – Polarization by			
	reflection - Polarization by double refraction - Polarization by scattering - The			
	phenomenon of double refraction - Normal and oblique incidence - Interference of			
	polarized light: Quarter and half wave plates - Analysis of polarized light - Optical			
	activity.			
II	LASERS: Basic principles – Spontaneous and stimulated emissions – Components	15	Upto	CLO2
	of the laser - Resonator and lasing action - Types of lasers and its applications -		K5	
	$Solid\ state\ lasers-Ruby\ laser-Nd: YAG\ laser-gas\ lasers-He-Ne\ laser-CO_{2}\ laser$			
	- Chemical lasers - HCl laser - Semiconductor laser.			
III	HOLOGRAPHY: Principle of holography - Recording of the hologram -	15	Upto	CLO3
	Reconstruction of the image - Theory - Some distinguishing characteristics of		K5	
	holographs - Practical applications of holography - Advances in holography.			
IV	FIBER OPTICS :Introduction – Total internal reflection – The optical fiber – Glass	15	Upto	CLO4
	fibers – The coherent bundle – The numerical aperture – Attenuation in optical fibers		K5	
	- Single and multi-mode fibers - Pulse dispersion in multimode optical fibers - Ray			
	dispersion in multimode step index fibers - Parabolicindex fibers - Fiber-optic			
	sensors: precision displacement sensor – Precision vibration sensor.			

V	NON-LINEAR OPTICS: Basic principles – Harmonic generation – Second	15	Upto	CLO5
	harmonic generation – Phase matching – Third harmonic generation – Optical mixing		K5	
	– Parametric generation of light – Self-focusing of light.			

- 1. B. B. Laud, 2017, Lasers and Non Linear Optics, 3rd Edition, New Age International (P) Ltd.
- 2. Ajoy Ghatak, 2017, Optics, 6th Edition, McGraw Hill Education Pvt. Ltd.
- 3. William T. Silfvast, 1996, Laser Fundamentals Cambridge University Press, New York
- 4. J. Peatros, Physics of Light and Optics, a good (and free!) electronic book
- 5. B. Saleh, and M. Teich, Fundamentals of Photonics, Wiley- Interscience

Books for Reference:

- 1. F. S. Jenkins and H. E. White, 1981, Fundamentals of Optics, (4th Edition), McGraw Hill International Edition.
- 2. Dieter Meschede, 2004, Optics, Light and Lasers, Wiley VCH, Varley GmbH.
- 3. Lipson, S. G. Lipson and H. Lipson, 2011, Optical Physics, 4th Edition, Cambridge University Press, New Delhi, 2011.
- 4. Y. B. Band, Light and Matter, Wiley and Sons (2006)
- 5. R. Guenther, Modern Optics, Wiley and Sons (1990)

Web Resources / E-Books

- 1. https://www.youtube.com/watch?v=WgzynezPiyc
- 2. https://www.youtube.com/watch?v=ShQWwobpW60
- 3. https://www.ukessays.com/essays/physics/fiber-optics-and-itapplications.php
- 4. https://www.youtube.com/watch?v=0kEvr4DKGRI
- 5. http://optics.byu.edu/textbook.aspx

Pedagogy:

Chalk and Talk, Seminar, PPT, Quiz, and Group Discussion.

Rationale for Nature of the course:

To know the concepts behind polarization and good pursue research work and application aspects of laser and to impart an extensive understanding of fiber and non – linear optics.

Activities to be given

- 1. To practice the students to demonstrate the basic configuration of a fiber optic communication system.
- 2. Train the students to interpret the group of experiments that based on laser.

Course Learning Outcomes (CLO's):

At the end of the course, the student will be able to:

СО	Course Learning Outcomes	K-Level
C01	Discuss the transverse character of light waves and different polarization phenomenon	Upto K5
CO2	Discriminate all the fundamental processes involved in laser devices and to analyze the design and operation of the devices	Upto K5
CO3	Study the important characteristics of holograms and its applications.	Upto K5
CO4	Demonstrate the basic configuration of a fiber optic – communication system and advantages	Upto K5
CO5	Identify the properties of nonlinear interactions of light and matter	Upto K5

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	3	3
C02	3	3	3	2	3	3
CO3	3	3	3	2	3	3
CO4	3	3	3	3	3	3
CO5	3	3	3	3	3	3

1. Basic level

2. Intermediate level

3.Advance level

Lesson Plan: (TOTAL HOURS: 75 Hrs)

Units	Course content	Hours	Mode
	POLARIZATION AND DOUBLE REFRACTION: Classification of	15	Chalk and
	polarization – Transverse character of light waves – Polarizer and analyzer		Talk & PPT
	Malu's law Production of polarized light – Wire grid polarizer and the		1 1 1 1
I	I polaroid – Polarization by reflection -Polarization by double refraction –		
	Polarization by scattering – The phenomenon of double refraction -		
	Normal and oblique incidence – Interference of polarized light: Quarter		
	and half wave plates – Analysis of polarized light – Optical activity.		
	LASERS: Basic principles – Spontaneous and stimulated emissions –		Chalk and
	Components of the laser -Resonator and lasing action – Types of lasers	15	Talk &
II	and its applications -Solid state lasers – Ruby laser – Nd:YAG laser – gas	13	Seminar
1	lasers - He-Ne laser - CO ₂ laser - Chemical lasers - HCl laser -		Semmar
	Semiconductor laser		
	HOLOGRAPHY: Principle of holography – Recording of the hologram	15	Chalk and
III	- Reconstruction of the image – Theory	13	Talk &
111	Some distinguishing characteristics of holographs		Seminar
	Practical applications of holography – Advances in holography.		Schina
	FIBER OPTICS :Introduction – Total internal reflection – The optical		Chalk and
		1.5	Talk & PPT
137	fiber – Glass fibers –The coherent bundle – The numerical aperture –	15	Talk & PPT
IV	Attenuation in optical fibers Single and multi-mode fibers – Pulse		
	dispersion in multimode optical fibers -Ray dispersion in multimode step		
	index fibers – Parabolicindex fibers – Fiber- optic sensors: precision		
	displacement sensor- Precision vibration sensor		
	NON-LINEAR OPTICS :Basic principles – Harmonic generation -	15	Chalk and
V	Second harmonic generation – Phase matching Third harmonic generation		Talk &
	- Optical mixing -Parametric generation of light -Self-focusing of light		Seminar

	Department of Physics				Clas	s: I M.	Sc.,	
Sem	Sem Category Course Code Course Title Credits			Contact Hours	CIA	SE	Total	
					/ Week			
II	DSEC	23OPPHDSE2C	Solar Energy Utilization	3	5	25	75	100

Nature of the Course					
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented			
	✓				

Course Objectives:

- 1. To impart fundamental aspects of solar energy utilization.
- 2. To give adequate exposure to solar energy related industries
- 3. To harness entrepreneurship skills
- 4. To understand the different types of solar cells and channelizing them to the different sectors of society
- 5. To develop an industrialist mind set by utilizing renewable source of energy

Course Content:

UNIT	Course Content	Hours	K level	CLO
I	Conduction, Convection and Radiation – Solar Radiation at the earth's surface – Determination of solar time – Solar energy measuring instruments.	15	Upto K5	CO1
II	Physical principles of conversion of solar radiation into heat flat plate collectors - General characteristics - Focusing collector systems - Thermal performance evaluation of optical loss.	15	Upto K5	CO2
III	Types of solar water heater - Solar heating system - Collectors and storage tanks - Solar ponds - Solar cooling systems.	15	Upto K5	CO3
IV	Photo Voltaic principles – Types of solar cells – Crystalline silicon/amorphous silicon and Thermo - electric conversion - process flow of silicon solar cells- different approaches on the process- texturization, diffusion, Antireflective coatings, metallization.	15	Upto K5	CO4

	Use of nanostructures and nanomaterials in fuel cell			
	technology - high and low temperature fuel cells, cathode			
V	and anode reactions, fuel cell catalysts, electrolytes,	15	Unto V5	CO5
v	ceramic catalysts. Use of Nano technology in hydrogen	13	Upto K5	CO3
	production and storage. Industrial visit – data collection and			
	analysis - presentation			

- 1. Solar Energy Utilisation –G.D Rai-Khanna Publisher-Delhi 1987.
- Maheshwar Sharon, Madhuri Sharon, Carbon "Nano Forms And Applications" Mc.Graw Hill,2010
- 3. Soteris A. Kalogirou, "Solar Energy Engineering: Processes and Systems", Academic Press, London, 2009.
- 4. Tiwari G.N, "Solar Energy Fundamentals Design, Modelling and applications, Narosa Publishing House, New Delhi, 2002
- 5. Sukhatme S.P. Solar Energy, Tata McGraw Hill Publishing Company Ltd., New Delhi, 1997.

Books for Reference:

- 1. Energy An Introduction to Physics R.H.Romer, W.H.Freeman.(1976)
- 2. Solar energy thermal processes John A.Drife and William. (1974)
- 3. John W. Twidell & Anthony D. Weir, 'Renewable Energy Resources, 2005
- 4. John A. Duffie, William A. Beckman, Solar Energy: Thermal Processes, 4th Edition, john Wiley and Sons, 2013.
- 5. Duffie, J.A., Beckman, W.A., "Solar Energy Thermal Process", John Wiley and Sons, 2007.

Web Resources / E-Books

- 1. https://pdfs.semanticscholar.org/63a5/a69421b69d2ce9f359bbfc86c63556 f9a4fb
- 2. https://books.google.vg/books?id=lXHcwZo9XwC&sitesec=buy&source=gbs_vpt_re ad
- 3. www.nptel.ac.in/courses/112105051
- 4. www.freevideolectures.com
- 5. http://www.e-booksdirectory.com

Rationale for nature of Course

employability oriented: Study of the solar energy utilisation leads to information which is of practical value to the physicist. it gives us information about the applications of solar energy. students who undergo this course are successfully bound to get a better insight and understanding of the subject.

Activities to be given:

- 1. Enhancing the quality of students to understand the solar energy.
- 2. Train the students to understand the heat transfer and solar radiation.

Course Learning Outcomes (CLOs):

At the end of the course, the student will be able to:

CLO	Course Learning Outcomes	K-Level
CLO1	Gained knowledge in fundamental aspects of solar energy	Upto K5
	utilization	
CLO2	Equipped to take up related job by gaining industry exposure	Upto K5
CLO3	Develop entrepreneurial skills	Upto K5
CLO4	Skilled to approach the needy society with different types of solar cells	Upto K5
CLO5	Gained industrialist mindset by utilizing renewable source of	Upto K5
	energy	

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	3	2	3	3	3
CLO2	3	3	2	3	3	3
CLO3	3	3	3	3	3	3
CLO4	3	3	2	3	3	3
CLO5	3	3	3	3	3	3

1-Basic Level 2- Intermediate Level 3- Advanced Level

Lesson Plan: (TOTAL HOURS: 75 Hrs)

Units	Course content	Hours	Mode
I	Conduction, Convection and Radiation – Solar Radiation at the earth's surface -Determination of solar time-Solar energy measuring instruments	15	Chalk and Talk & PPT
II	Physical principles of conversion of solar radiation into heat flat plate collectors -General characteristics – Focusing collector systems -Thermal performance evaluation of optical loss	15	Chalk and Talk & Seminar
III	Types of solar water heater - Solar heating system Collectors and storage tanks -Solar ponds - Solar cooling systems	15	Chalk and Talk & Seminar
IV	Photo Voltaic principles – Types of solar cells – Crystalline silicon/amorphous silicon and Thermo -electric conversion - process flow of silicon solar cells- different approaches on the process-texturization, diffusion, Antireflective coatings, metallization.	15	Chalk and Talk & PPT
V	Use of nanostructures and nanomaterials in fuel cell technology -high and low temperature fuel cells, cathode and anode reactions, fuel cell catalysts, electrolytes, ceramic catalysts-Use of Nano technology in hydrogen production and storage-Industrial visit – data collection and analysis - presentation	15	Chalk and Talk & Seminar

Department of Physics					Cl	ass: I M.S	с.,	
Sem	Category	Course Code	Course Title	Credits	Contact Hours / Week	CIA	SE	Total
II	DSEC	23OPPHDSE2D	Bio physics	3	5	25	75	100

Nature of the Course					
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented			
	✓				

Course Objectives:

- 1. To understand the physical principles involved in cell function maintenance.
- 2. To understand the fundamentals of macromolecular structures involved in propagation of life.
- 3. To understand the biophysical function of membrane and neuron.
- 4. To understand various kinds of radiation and their effects on living system and to know the hazards posed by such radiations and the required precautions.
- 5. To understand the physical principles behind the various techniques available for interrogating biological macromolecules.

Course Content:

Unit	Course Content	Hours	K Level	CLO
	CELLULAR BIOPHYSICS Architecture and Life Cycle of cells –	15	Upto K5	CLO1
	Organelles of Prokaryotic and Eukaryotic cell - Cell size and shape -			
I	Fine structure of Prokaryotic and Eukaryotic cell organization -			
	Compartment & assemblies membrane system – Extracellular matrix -			
	Molecular mechanisms of Vesicular traffic - Electrical activities of			
	cardiac and neuronal cells.			
	MOLECULAR BIOPHYSICS Macromolecular structure: Protein	15	Upto K5	CLO2
	structure - amino acids, peptide bonds, primary, secondary, tertiary and			
II	quaternary structures of proteins -Nucleic acid structure: nucleosides and			
	nucleotides, RNA structure, DNA structure and conformation. Special			
	Bio-macromolecules: Metalloproteins, nucleoproteins, ribozymes,			
	chaperons and prions.			
	MEMBRANE AND NEURO BIOPHYISCS Models membranes -	15	Upto K5	CLO3
III	Biological membranes and dynamics - Membrane Capacitors -			
	Transport across cell and organelle membranes – Ion channels.			
	Nervous system: Organization of the nervous system -Membrane			

	potential - Origins of membrane potential - Electrochemical potentials -			
	Nernst equation – Goldman equation.			
	RADIATION BIO PHYSICS X-Ray: Effects on bio-macromolecules –	15	Upto K5	CLO4
IV	Gamma Radiation: Molecular effects of gamma radiation, Radiation			
114	effects on nucleic acids and membranes, Effects on cell and organelles -			
	UV radiation: Effects on biomacromolecules and proteins - Radiation			
	hazards and protection – use of radiations in cancer.			
	PHYSICAL METHODS IN BIOLOGY Spectroscopy: UV-Visible	15	Upto K5	CLO5
	absorption spectrophotometry - Optical Rotatory Dispersion (ORD) -			
	Structure Determination: X-ray Crystallography, Electron spin resonance			
v	(ESR) and biological applications. Chromatography: Thin layer			
	chromatography (TLC), Gas liquid chromatography (GLC) -			
	Centrifugation: Differential centrifugation, density gradient			
	centrifugation. Electrophoresis: Gel electrophoresis, polyacrylamide gel			
	electrophoresis.			

- 1. The cell: A molecular approach, Geoffrey M. Cooper, ASM Press, 2013.
- 2. Biophysics, VasanthaPattabhi, N. Gautham, Narosa Publishing, 2009
- 3. Biophysics, P. S. Mishra VK Enterprises, 2010.
- 4. Biophysics, M. A Subramanian, MJP Publishers, 2005.
- 5. Bioinstrumentation, L. Veerakumari, MJP Publishers, 2006.

Books for Reference:

- 1. Chemical Biophysics by Daniel A Beard (Cambridge University Press, 2008).
- 2. Essential cell biology by Bruce Albert et al (Garland Science)
- 3. Biophysics, W. Hoppe, W. Lohmann, H. Markl and H. Ziegler. Springer Verlag, Berlin (1983).
- 4. Membrane Biophysics by Mohammad Ashrafuzzaman, Jack A. Tuszynski, (Springer science & business media).
- 5. Biological spectroscopyby Iain D. Campbell, Raymond A. Dwek

Web Resources / E-Books

- 1. General Bio: http://www.biology.arizona.edu/DEFAULT.html
- 2. Spectroscopy: http://www.cis.rit.edu/htbooks/nmr/inside.htm
- 3. Electrophoresis:http://learn.genetics.utah.edu/content/labs/gel/
- 4. Online biophysics programs: http://mw.concord.org/modeler/
- 5. https://blanco.biomol.uci.edu/WWWResources.html

Pedagogy:

Chalk and Talk, Seminar, Quiz, and Group Discussion.

Rationale for Nature of the course:

Learn about the basic concepts of biophysical function of membrane and neuron.

Activities to be given

To analyse and interpret data from various techniques available for biological macromolecules

Course Learning Outcomes(CLOs):

At the end of the course, the student will be able to:

CLO	Course Learning Outcomes	K- Level
CO1	Understand the structural organization and function of living cells	Upto K5
	and should able to apply the cell signaling mechanism and its	
	electrical activities.	
CO2	Comprehension of the role of biomolecular conformation to	Upto K5
	function.	
CO3	Conceptual understanding of the function of biological membranes	Upto K5
	and also to understand the functioning of nervous system.	
CO4	To know the effects of various radiations on living systems and how	Upto K5
	to prevent ill effects of radiations.	
CO5	Analyze and interpret data from various techniques viz.,	Upto K5
	spectroscopy, crystallography, chromatography etc.,	

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	1	2
CO2	3	3	3	2	1	2
CO3	3	3	3	3	1	1
CO4	3	3	3	2	1	1
CO5	3	3	3	3	1	1

1. Basic level 2. Intermediate level 3.Advance level

Lesson Plan (TOTAL HOURS :75 Hrs)

Units	Course content	Hours	Mode
	CELLULAR BIOPHYSICS Architecture and Life Cycle of cells –	15	Chalk and
	Organelles of Prokaryotic and Eukaryotic cell – Cell size and shape		Talk &
I	- Fine structure of Prokaryotic and Eukaryotic cell organization -		Seminar
	Compartment & assemblies membrane system – Extracellular matrix		
	- Molecular mechanisms of Vesicular traffic - Electrical activities of		
	cardiac and neuronal cells.		
	MOLECULAR BIOPHYSICS Macromolecular structure: Protein		
	structure – amino acids, peptide bonds, primary, secondary, tertiary		
	and quaternary structures of proteins -Nucleic acid structure:	15	Chalk and
II	nucleosides and nucleotides, RNA structure, DNA structure and		Talk &
	conformation. Special Bio-macromolecules: Metalloproteins,		Seminar
	nucleoproteins, ribozymes, chaperons and prions.		
	MEMBRANE AND NEURO BIOPHYISCS Models membranes -		
	Biological membranes and dynamics - Membrane Capacitors -		
III	Transport across cell and organelle membranes – Ion channels.	15	Chalk and
	Nervous system: Organization of the nervous system –Membrane		Talk &
	potential - Origins of membrane potential - Electrochemical		Seminar
	potentials – Nernst equation – Goldman equation.		
	RADIATION BIO PHYSICS X-Ray: Effects on bio-	15	Chalk and
	macromolecules - Gamma Radiation: Molecular effects of gamma		Talk &
IV	radiation, Radiation effects on nucleic acids and membranes, Effects		Seminar
	on cell and organelles – UV radiation: Effects on biomacromolecules		
	and proteins – Radiation hazards and protection – use of radiations		
	in cancer.		
	PHYSICAL METHODS IN BIOLOGY Spectroscopy: UV-		
	Visible absorption spectrophotometry – Optical Rotatory Dispersion		
	(ORD) – Structure Determination: X-ray Crystallography, Electron		
	spin resonance (ESR) and biological applications. Chromatography:		
	Thin layer chromatography (TLC), Gas liquid chromatography	15	
V	(GLC) – Centrifugation: Differential centrifugation, density gradient		Chalk and
	centrifugation. Electrophoresis: Gel electrophoresis, polyacrylamide		Talk &
	gel electrophoresis.		Seminar

Department of Physics			Class:	I M.Sc.,				
Sem	Category	Course Code	Course Title	Credits	Contact Hours / Week	CIA	SE	Total
II	SEC	23OPPHSEC21	Microprocessor 8085 and Microcontroller 8051	2	2	25	75	100

Nature of the Course					
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented			
	✓				

Course Objectives:

- 1. To provide an understanding of the architecture and functioning of microprocessor 8085A.
- 2. To learn the methods of interfacing I/O devices and memory to microprocessor.
- 3. To study the concepts of 8085A programming function and their applications.
- 4. To Acquire the architecture and instruction sets of microcontroller 8051.

Course Content:

Unit	Course Contents	Hours	K Level	CLO
I.	8085 PROGRAMMING, PERIPHERAL DEVICES AND THEIR	6	Upto K4	CLO1
	INTERFACING: Instruction set - Addressing modes - Programming			
	techniques - Memory mapped I/O scheme - I/O mapped I/O scheme -			
	Programmable peripheral interface (PPI) - Control group and control			
	word- Programmable communication interface Programmable counter			
	/interval timer.			
II.	8085 INTERFACING APPLICATIONS: Seven segment display	6	Upto	CLO2
	interface - Interfacing of Digital to Analog converter and Analog to		K4	
	Digital converter - Stepper motor interface - Measurement of electrical			
	quantities -Voltage and current) Measurement of physical quantities			
	(Temperature an strain).			
II.	8051 MICROCONTROLLER HARDWARE: Introduction –	6	Upto	CLO3
	Features of 8051 - 8051 Microcontroller Hardware: Pin-out 8051,		K4	
	Central Processing Unit (CPU), internal RAM, Internal ROM, Register			
	set of 8051 – Memory organization of 8051 – Input/ Output pins, Ports			
	and Circuits - External data memory and program memory: External			
	program memory, External data memory.			

V.	8051 INSTRUCTION SET AND ASSEMBLY LANGUAGE	6	Upto K5	CLO4
	PROGRAMMING: Addressing modes – Data moving (Data transfer)			
	instructions: Instructions to Access external data memory, external			
	ROM / program memory, PUSH and POP instructions, Data exchange			
	instructions.			
V.	INTERRUPT PROGRAMMING AND INTERFACING TO	6	Upto K5	CLO5
	EXTERNAL WORLD: 8051 Interrupts – Interrupt vector table –			
	Enabling and disabling an interrupt - Timer interrupts and			
	programming - Programming external hardware interrupts - Serial			
	communication interrupts and programming - LED Interface Seven			
	segment display interface- Interfacing of Digital to Analog converter			
	and Analog to Digital converter			

- 1. A. NagoorKani, Microprocessors & Microcontrollers, RBA Publications (2009).
- 2. A. P. Godse and D. A. Godse, Microprocessors, Technical Publications, Pune (2009).
- 3. Ramesh Gaonkar, Microprocessor Architecture, Programming and Applications with 8085, Penram International Publishing (2013).
- 4. B. Ram, Fundamentals of Microprocessors & Microcontrollers, DhanpatRai publications New Delhi (2016).
- 5. V. Vijayendran, 2005, Fundamentals of Microprocessor-8085", 3rd Edition S. Visvanathan Pvt, Ltd.

Books for Reference:

- Douglas V. Hall, Microprocessors and Interfacing programming and Hardware, Tata Mc Graw Hill Publications (2008)
- 2. Muhammad Ali Mazidi, Janice GillispieMazidi, Rolin D. Mckinlay, The 8051 Microcontroller and Embedded Systems, Pearson Education (2008).
- 3. Barry B. Brey, 1995, The Intel Microprocessors 8086/8088, 80186, 80286, 80386 and 80486, 3rd Edition, Prentice- Hall of India, New Delhi.
- 4. J. Uffrenbeck, "The 8086/8088 Family-Design, Programming and Interfacing, Software, Hardware and Applications", Prentice-Hall of India, New Delhi.
- 5. W. A. Tribel, Avtar Singh, "The 8086/8088 Microprocessors: Programming, Interfacing, Software, Hardware and Applications", Prentice-Hall of India, New Delhi.

Web Resources / E-Books

- 1. https://www.tutorialspoint.com/microprocessor/microprocessor_8085_architecture.html
- 2. http://www.electronicsengineering.nbcafe.in/peripheral-mapped-io-interfacing/
- 3. https://www.geeksforgeeks.org/programmable-peripheral-interface-8255/
- 4. http://www.circuitstoday.com/8051-microcontroller
- 5. https://www.elprocus.com/8051-assembly-language-programming/

Pedagogy:

Chalk and Talk, Seminar, Quiz, and Group Discussion.

Rationale for Nature of the course:

Learn about the basic concepts of architecture and functioning of microprocessor 8085 and able to write simple assembly language programs for 8051 Microcontroller.

Activities to be given

- 1. To practice the students to Gain knowledge of architecture and working of 8085 microprocessors.
- 2. Enhancing the students to write simple assembly language programs for 8051 Microcontroller.

Course Learning Outcomes (CLOs):

At the end of the course, the student will be able to:

CLO	Course Learning Outcomes	K- Level	
CO1	Gain knowledge of architecture and working of 8085 microprocessor.	Upto K4	
CO2	Get knowledge of architecture and working of 8051 Microcontroller.	Upto K4	
CO3	Be able to write simple assembly language programs for 8085A microprocessor.	Upto K4	
CO4	Able to write simple assembly language programs for 8051 Microcontroller.	Upto K5	
CO5	Understand the different applications of microprocessor and microcontroller.	Upto K5	

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	3	3	3	3	1
CO2	2	1	1	1	1	1
CO3	3	3	3	3	3	1
CO4	3	3	3	3	3	1
CO5	3	3	3	3	4	

1. Basic level

2. Intermediate level

3.Advance level

Lesson Plan (TOTAL HOURS: 30 Hrs)

Units	Course content	Hours	Mode
I	8085 PROGRAMMING, PERIPHERAL DEVICES AND THEIR INTERFACING: Instruction set - Addressing modes - Programming techniques - Memory mapped I/O scheme - I/O mapped I/O scheme - Programmable peripheral interface (PPI) - Control group and control word- Programmable communication interface Programmable counter /interval timer.	6	Chalk and Talk & Seminar
П	8085 INTERFACING APPLICATIONS: Seven segment display interface - Interfacing of Digital to Analog converter and Analog to Digital converter - Stepper motor interface - Measurement of electrical quantities -Voltage and current) Measurement of physical quantities (Temperature an strain).	6	Chalk and Talk & Seminar
III	8051 MICROCONTROLLER HARDWARE: Introduction – Features of 8051 – 8051 Microcontroller Hardware: Pin-out 8051, Central Processing Unit (CPU), internal RAM, Internal ROM, Register set of 8051 – Memory organization of 8051 – Input/ Output pins, Ports and Circuits – External data memory and program memory: External program memory, External data memory.	6	Chalk and Talk & Seminar
IV	8051 INSTRUCTION SET AND ASSEMBLY LANGUAGE PROGRAMMING: Addressing modes – Data moving (Data transfer) instructions: Instructions to Access external data memory, external ROM / program memory, PUSH and POP instructions, Data exchange instructions.	6	Chalk and Talk & Seminar
V	INTERRUPT PROGRAMMING AND INTERFACING TO EXTERNAL WORLD: 8051 Interrupts – Interrupt vector table – Enabling and disabling an interrupt – Timer interrupts and programming – Programming external hardware interrupts – Serial communication interrupts and programming – LED Interface Seven segment display interface- Interfacing of Digital to Analog converter and Analog to Digital converter	6	Chalk and Talk & Seminar