E.M.G. YADAVA WOMEN'S COLLEGE, MADURAI – 625 014.

(An Autonomous Institution – Affiliated to Madurai Kamaraj University) Re-accredited (3rd Cycle) with Grade A⁺ & CGPA 3.51 by NAAC

DEPARTMENT OF MATHEMATICS

TANSCHE-CBCS with OBE MASTER OF SCIENCE PROGRAMME CODE - PM

COURSE STRUCTURE

(w.e.f. 2023- 2024 Batch onwards)

E.M.G. YADAVA WOMEN'S COLLEGE, MADURAI-14.

(An Autonomous Institution Affiliated to Madurai Kamaraj University)

Re-accredited (3rd Cycle) with Grade $A^{\scriptscriptstyle +}$ and CGPA 3.51 by NAAC

DEPARTMENT OF MATHEMATICS-PG

(w.e.f. 2023 – 2024 Batch onwards)

COURSE STRUCTURE

TANSCHE-CBCS with OBE

Sem Part Subject Code Title of the Cou		Title of the Course	Teaching	Duration	Marks Allotted				
Sem	1 al t	Subject Code	The of the Course	(per Week)	Exam brs	CIA	SE	Total	Credits
Ι		230PMA11	Core I: Algebraic Structures	7	3	25	75	100	5
	III	230PMA12	Core II: Real Analysis I	7	3	25	75	100	5
		230PMA13	Core III: Ordinary Differential Equations	6	3	25	75	100	4
			DSEC I	5	3	25	75	100	3
			DSEC II	5	3	25	75	100	3
		230PMA21	Core IV : Advanced Algebra	6	3	25	75	100	5
ΙΙ	III	230PMA22	Core V: Real Analysis II	6	3	25	75	100	5
		230PMA23	Core VI: Partial Differential Equations	6	3	25	75	100	4
			DSEC III	5	3	25	75	100	3
			DSEC IV	5	3	25	75	100	3
	IV	23OPMASEC2	SEC I : Office Automation and ICT Tools	2	3	25	75	100	2
	III	230PMA31	Core VII: Complex Analysis	6	3	25	75	100	5
		23OPMA32	Core VIII: Probability Theory	6	3	25	75	100	5
		23OPMA33	Core IX: Topology	6	3	25	75	100	5
		230PMA34	Core X(IM): Linear Algebra	6	3	25	75	100	4
111			DSEC V	4	3	25	75	100	3
	IV	23OPMASEC3P	SEC II: Mathematical Documentation Using Latex	2	3	40	60	100	2
		23OPMAIN3	Internship / Industrial Activity						2
		23OPMA41	Core XI : Functional Analysis	6	3	25	75	100	5
	111	230PMA42	Core XII: Differential Geometry	6	3	25	75	100	5
	111	23OPMAPR4	Project	10	3	20	80	100	7
IV.			DSEC VI	4	3	25	75	100	3
IV	IV	23OPMASEC4	SEC III : Mathematics for NET/UGC-CSIR/SET/	4	3	25	75	100	2
	TRB Competitive Examination		Extension Activity						
	v	250F3EA4	Extension Activity						1
	TOTAL								91

IM - Industry Modules

DSEC - Discipline Specific Elective Course

SEC - Skill Enhancement Course

Semester I : Elective I and Elective II

DSEC - I (Choose any one)

1. Number theory and Cryptography -23OPMADSE1A

2. Graph Theory and Applications - 23OPMADSE1B

DSEC -II

1. Mathematical Programming - 23OPMADSE1C

2. Fuzzy Sets and their Applications- 23OPMADSE1D

Semester II: Elective III and Elective IV

DSEC-III

- 1. Modeling and Simulation with Excel -23OPMADSE2A
- 2. Fluid Dynamics 230PMADSE2B

DSEC –IV

- 1. Mathematical Statistics 230PMADSE2C
- 2. Stochastic Process- 23OPMADSE2D

Semester – III Elective V and Elective VI

DSEC - V (Choose any one)

- 1. Resource Management Techniques 23OPMADSE3A
- 2. Stochastic Process 23OPMADSE3B

Semester – IV

DSEC - VI (Choose any one)

- 1. Mathematical Python 23OPMADSE4A
- 2. Discrete Mathematics 23OPMADSE4B

Annexure -1

Department of Mathematics						II M.Sc.		
Sem	Category	Course Code	Course Title	Credits	Contact Hours/week	CIA	SE	Total
III	Core	230PMA31	Complex Analysis	5	6	25	75	100

Nature of the Course				
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented		

Course Objectives:

- 1. To learn Cauchy's Integral Formula
- 2. To Study the Chains, cycles and The General statement of Cauchy's Theorem
- 3. To Evaluate the Definite Integrals and Harmonic Functions
- 4. To Describe the Power Series Expansions
- 5. To learn Partial Fractions and Entire Functions

Course Content:

Unit	Course Content	90Hours	K Level	CLO
Ι	Cauchy's Integral Formula: The Index of a	18	Up to K4	CLO 1
	point with respect to a closed curve – The Integral			
	formula – Higher derivatives. Local Properties of			
	analytical Functions :Removable Singularities-			
	Taylors's Theorem – Zeros and poles – The local			
TT	Mapping – The Maximum Principle.	10	TT A TZ A	CL O O
11	The general form of Cauchy's Theorem :	18	Up to K4	CLO 2
	Homology The General statement of			
	Cauchy's Theorem - Proof of Cauchy's			
	theorem - Locally exact differentials- Multiply			
	connected regions - Residue theorem - The			
	argument principle.			
III	Evaluation of Definite Integrals and	18	Up to K4	CLO 3
	Harmonic Functions Evaluation of definite			
	integrals - Definition of Harmonic function			
	and basic properties - Mean value property -			
	Poisson formula.			
IV	Harmonic Functions and Power Series	18	Up to K5	CLO 4
	Expansions:			
	Schwarz theorem - The reflection principle -			
	Weierstrass theorem - Taylor's Series -			
	Laurent series .			
V	Partial Fractions and Entire Functions:	18	Up to K5	CLO 5
	Partial fractions - Infinite products - Canonical			
	products – Gamma Function- Jensen's formula –			
	Hadamard's Theorem			

Book for study:

Lars V. Ahlfors, Complex Analysis, (3rd edition) McGraw Hill Co., New York, 1979

Chapters:

Unit	Chapters	Sections
I	4	Section 2 : 2.1 to 2.3 Section 3 : 3.1 to 3.4
II	4	Section 4 : 4.1 to 4.7 Section 5: 5.1 and 5.2
III	4	Section 5 : 5.3 Section 6 : 6.1 to 6.3
IV	4,5	Section 6: 6.4 and 6.5 Section1: 1.1 to 1.3
V	5	Section:2 :2.1 to 2.4 Section:3 :3.1 and 3.2

Books for Reference:

- 1. H.A. Presfly, Introduction to complex Analysis, Clarendon Press, oxford, 1990.
- 2. J.B. Conway, *Functions of one complex variables* Springer Verlag, International student Edition, Naroser Publishing Co.1978
- 3. E. Hille, Analytic function Theory(2 vols.), Gonm & Co, 1959.
- 4. M.Heins, *Complex function Theory*, Academic Press, New York, 1968.

Web Resources:

http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics, http://www.opensource.org , http://en.wikipedia.org

Pedagogy:

Chalk and Talk, Power point presentations, Group Discussions, Quiz, Assignment and Seminar.

Rationale for nature of Course:

Knowledge and Skill:

Knowledge, Problem Solving, Analytical ability, Professional Competency, Professional Communication and Transferable Skill

١

E.M.G.YADAVA WOMEN'S COLLEGE, MADURAI-14.

Activities to be given:

We will be providing students with intellectual problems, theory application problems, group

discussion and other practical works. We also guide them to refer books and web resources.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

COs	Course Outcomes	K-level
CO1	Analyze and evaluate local properties of analytical functions and definite integrals.	Up to K4
CO2	Describe the concept of definite integral and harmonic functions.	Up to K4
CO3	Demonstrate the concept of the general form of Cauchy's theorem	Up to K4
CO4	Develop Taylor and Laurent series .	Up to K5
CO5	Explain the infinite products, canonical products and Jensen's formula .	Up to K5

- K1- Remembering facts with specific answers.
- K2- Basic understanding of facts.
- K3- Application oriented -Solving Problems.
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria.

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	2	3	1	3	3
CLO2	3	1	3	2	3	3
CLO3	2	1	3	1	3	3
CLO4	3	2	3	1	3	3
CLO5	1	2	3	2	3	3

1.Basic level

2. Intermediate level

3. Advanced level

Lesson plan:

Unit	Description	Hours	Total Hours	Mode
I	The Index of a point with respect to a closed curve, The Integral formula, Higher derivatives. Local Properties of analytical Functions	9	18	Chalk & Talk
	Removable Singularities, Taylors's Theorem , Zeros and poles , The local Mapping , The Maximum Principle	9		
II	Chains and cycles, Simple Continuity, Homology, The General statement of Cauchy's Theorem, Proof of Cauchy's theorem.	9	18	Chalk & Talk
	Locally exact differentials, Multiply connected regions, Residue theorem, The argument principle.	9		
III	Evaluation of definite integrals , Definition of Harmonic function and basic properties .	9	18	PowerPoint Presentation & Seminar
	Mean value property, Poisson formula.	9		
IV	Schwarz theorem ,The reflection principle .	9	18	PowerPoint Presentation, Seminar,
	Weierstrass theorem, Taylor's Series	5		Assignment
	Laurent series .	4		
V	Partial fractions , Infinite products Canonical products ,Gamma Function.	9	18	PowerPoint Presentation & Seminar
	Jensen's formula ,Hadamard's Theorem	9		
		Total	90	

Course Designer: S.Selvi

Annexure -1

Department of Mathematics					I M.Sc.,			
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total
					Hours/week			
III	Core	230PMA32	Probability Theory	5	6	25	75	100

Nature of the Course				
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented		

Course Objectives:

- 1. To introduce the axiomatic approach of probability theory, some statistical characteristics, discrete and continuous distribution functions and their properties,
- 2. To learn more about the characteristic function and basic limit theorems of Probability

Course Content:

Unit	Course	90	K Level	CLO
	Content	Hours		
Ι	UNIT-I : Random Events and Random Variables: Random events – Probability axioms – Combinatorial formulae – conditional probability – Bayes Theorem – Independent events – Random			
	Variables – Distribution Function – Joint Distribution – Marginal Distribution – Conditional Distribution – Independent random variables – Functions of random variables.	18	Up toK4	CL01
П	UNIT-II : Parameters of the Distribution : Expectation- Moments – The Chebyshev Inequality – Absolute moments – Order parameters – Moments of random vectors – Regression of the first and second types.	18	Up toK4	CLO2
III	UNIT-III: Characteristic functions : Properties of characteristic functions – Characteristic functions and moments – semi0invariants – characteristic function of the sum of the independent random variables – Determination of distribution function by the Characteristic function – Characteristic function of multidimensional random vectors – Probability generating functions	18	Up toK4	CLO3
IV	UNIT-IV : Some Probability distributions: One point , two point , Binomial – Polya – Hypergeometric – Poisson (discrete) distributions – Uniform – normal gamma – Beta – Cauchy and Laplace (continuous) distributions.	18	Up toK5	CLO4
v	UNIT-V: Limit Theorems : Stochastic convergence – Bernaulli law of large numbers – Convergence of sequence of distribution functions – Levy-Cramer Theorems – de Moivre-Laplace Theorem –Lindberg Theorem – Lapunov Theroem- Poisson, Chebyshev, Khintchine law of large numbers – Strong Law of large numbers	18	Up toK5	CLO5

Annexure -1

Book for study:

1.M. Fisz, Probability Theory and Mathematical Statistics, John Wiley and Sons, New York, 1963

Chapter:

UNIT	CHAPTER(S)	SECTIONS
Ι	1&2	1.1 to 1.7 & 2.1 to 2.9
II	3	3.1 to 3.8
III	4	4.1 to 4.7
IV	5	5.1 to 5.10
V	6	6.1 to 6.4,6.6 to 6.9, 6.11 & 6.12

Books for Reference:

- 1. R.B. Ash, Real Analysis and Probability, Academic Press, New York, 1972
- 2. K.L.Chung, A course in Probability, Academic Press, New York, 1974.
- 3. R.Durrett, *Probability : Theory and Examples*, (2nd Edition) Duxbury Press, New York, 1996.
- 4. V.K.Rohatgi*An Introduction to Probability Theory and Mathematical Statistics*, Wiley Eastern Ltd., New Delhi,1988(3rd Print).
- 5. S.I.Resnick, A Probability Path, Birhauser, Berlin, 1999.
- 6. B.R.Bhat, *Modern Probability Theory* (3rd Edition), New Age International (P)Ltd, New Delhi, 1999

Web Resources:

1.http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,

2.http://www.opensource.org, http://www.probability.net

Pedagogy:

• Chalk and Talk, Powerpoint presentations, Group Discussions, Quiz, Assignment and Seminar **Rationale for nature of Course:**

Knowledge and Skill:

Knowledge, Problem Solving, Analytical ability, Professional Competency, Professional Communication and Transferable Skill

Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussion and other practical works. We also guide them to refer books and web resources.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

СО	Course learning outcome	K-level
CO1	Identify the concept of Random Events and Random Variables	Upto K4
CO2	Analyze the concept of Distribution	Upto K4
CO3	Understand and describe the basic concept of Characteristic	Upto K4
	Functions	
CO4	Understand the concept of Probability Distribution	Upto K5
CO5	Understand the concept of Limit Theorems	Upto K5

K1- Remembering facts with specific answers

- K2- Basic understanding of facts.
- K3- Application oriented
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	3	1	1	3	3
CLO2	3	3	2	2	1	3
CLO3	3	3	2	2	2	3
CLO4	3	2	2	2	1	3
CLO5	3	3	2	2	1	3

1-Basic Level 2- Intermediate Level 3- Adv

3- Advanced Level

Annexure -1

Lesson Plan

Unit		Hours		Mode	
	Description				
	Random Events	6			
Ι	Random Variables	6	18	Lecture Quiz.	
	Fuctions of Random Variable	6			
	Parameters of Distribution	6			
Π	The Chebyshev Inequality	6		Lecture, Quiz.	
	Regression of the first and second types	6	18		
	Properties of Characteristic functions	6		DDT	
тт	Determination of distribution function by the	6	18		
111	Characteristic function	6	10	Lecture,Quiz	
	Probability generarating fuctions	6			
	Some Probability Distribution	6		PPT,	
	Poisson (discrete) Diistribution	6	18	Lecture .Ouiz.	
IV	Cauchy and Laplace (Continuous) Distrubution	6			
	Limit Theorems	6		Assignments	
V	Levy Cramer Theorems, Demoivre -Laplace Theorem	6	18	and Seminar	
	Khintchine law of large numbers – Strong Law of large numbers	6			
	Total		90		

Course Designer:Mrs.T.Thivya

Department of Mathematics							II M.	Sc.
Sem	Category	Course Code	Course Title	Credits	Contact Hours/week	CIA	SE	Total
III	Core	230PMA33	Topology	5	6	25	75	100

	Nature of the Course	
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented

Course Objectives:

- 1.To introduce the fundamental ideas of topological spaces.
- 2.To construct a continuous function and the concepts of connectedness
- 3.To study the concept of compactness, apply the techniques of count ability axioms
 - and Urysohn lemma.

Course Content:

Unit	Course Content	Hours	K Level	CLO
Ι	Topological Spaces:	18	Up to K4	CLO 1
	Topological Spaces - Basis for a Topology –			
	The Order Topology – The Product Topology			
	on X x Y – The Subspace Topology – Closed			
	Sets and Limit Points.			
II	Continuous Functions:	18	Up to K4	CLO 2
	Continuous Functions – The Product Topology –			
	The Metric Topology.			
III	Connectedness:	18	Up to K4	CLO 3
	Connected Spaces – Connected Subspaces of the			
	Real Line ,Components and local connectedness.			
IV	Compactness:	18	Up to K5	CLO 4
	Compact Spaces – Compact Subspaces of the			
	Real Line – Limit Point Compactness.			
V	Countability and Separation Axioms:	18	Up to K5	CLO 5
	The Countability Axioms – The Separation			
	Axioms – Normal Spaces - The Urysohn Lemma			
	– The Urysohn Metrization Theorem.			

Book for study:

James R. Munkres, Topology – Second Edition, Prentice- Hall of India Private Limited, 2011.

Chapters:

Unit	Chapters	Sections
Ι	2	12 to 17
П	2	18 to 20
III	3	23 to 25
IV	3	26 to 28
V	4	30 to 34

Books for Reference:

- 1. Colin Adams, Robert Franzosa, "Introduction to Topology, Pure and Applied " Published by Dorling Kindersley Pvt.,Ltd, 2009.
- 2. Khanna M.L, "Topology," 8th Edition, Jai Prakash Nath & Co., Merrut, 1995.
- 3. Simmons G.F, "*Introduction to Topology and Modern Analysis*," Tata Graw Hill Education Pvt.,Ltd-2010.
- 4. Fred H.Croom, "Principles of Topology," Cengage India Pvt Ltd, New Delhi (2009)
- 5. Seymour Lipschutz, "Theory and Problems of General Topology", McGraw-Hill Edition, New Delhi (2006)

Web Resources:

- 1. https://postgis.net/docs/Topology.html
- 2. https://www.maths.ed.ac.uk/~v1ranick/papers/seifthreng.pdf

Pedagogy:

Chalk and Talk, Power point presentations, Group Discussions, Quiz, Assignment and Seminar

Rationale for nature of Course:

Knowledge and Skill:

Demonstrate an understanding of the concepts of metric space and topological spaces and pure basic results about completeness, compactness and connectedness within their structure.

Activities to be given:

We assign intellectual problems for solving and train them to refer e books and other web resources.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

COs	Course Outcomes	K-level
CO1	Understand topological space	Up to K4
CO2	Analyze continuous functions and Product Topology	Up to K4
CO3	Identify the connected topological spaces	Up to K4
CO4	To be able to understand the concept of compactness and limit point	Up to K5
	compactness	
CO5	To know about countability axioms and Urysohn lemma	Up to K5

K1- Remembering facts with specific answers.

K2- Basic understanding of facts.

K3- Application oriented -Solving Problems.

K4- Analyzing, examining and making presentations with evidence.

K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	0	· ,	0		· /
PO1	PO2	PO3	PO4	PO5	PO6
3	3	1	1	3	3
3	3	2	2	1	3
3	3	2	2	2	3
3	2	2	2	1	3
3	3	2	2	1	3
	PO1 3 3 3 3 3 3 3 3 3	PO1 PO2 3 3 3 3 3 3 3 2 3 3	PO1 PO2 PO3 3 3 1 3 3 2 3 3 2 3 2 2 3 2 2 3 3 2 3 2 2 3 3 2	PO1 PO2 PO3 PO4 3 3 1 1 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2	PO1 PO2 PO3 PO4 PO5 3 3 1 1 3 3 3 2 2 1 3 3 2 2 2 3 3 2 2 1 3 3 2 2 1 3 3 2 2 1 3 3 2 2 1 3 3 2 2 1 3 3 2 2 1

1.Basic level 2. Intermediate level

3. Advanced level

Lesson plan:

Unit	Description	Hours	Total Hours	Mode
	Topological Spaces, Basis for a Topology, The Order Topology	9		Chalk & Talk
Ι	The Product Topology on X x Y, The Subspace Topology, Closed Sets and Limit Points.	9	18	Chalk & Talk
	Continuous Functions, The Product Topology	9	18	Chalk & Talk
II	The Metric Topology	9		Chalk & Talk
	Connected Spaces	9	18	Chalk & Talk
III	Connected Subspaces of the Real Line.	9		Seminar
	Compact Spaces, Compact Subspaces of the Real Line	9	18	Chalk & Talk
IV				Seminar
	Limit Point Compactness.	9		Chalk & Talk Seminar
	The Countability Axioms, The Separation Axioms,	9		Chalk & Talk Seminar
V	Normai Spaces,		18	
	The Urysohn Lemma , The Urysohn Metrization Theorem.	9		Lecture, Quiz
	Total		90	

Course Designer: Dr.Mrs.G.Alarmelu Mangai

Department of Mathematics							II M	.Sc.
Sem	Category	Course	Course Title	Credits	Contact	CIA	SE	Total
		Code			Hours/week			
III	Core	230PMA34	Linear Algebra	4	6	25	75	100

	Nature of the Course	
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented

Course Objectives:

- 1. To study the subspaces and Linear Transformations.
- 2. To understand the inner Product spaces and Orthonormal set
- 3. To acquire the knowledge of Eigen Values and Eigen Vectors

Unit	Course Content	Hours	K Level	CLO
Ι	Unit I: Vector Spaces : Sub spaces –Algebra of	18	Up to K4	CLO 1
	Subspaces-Quotient Spaces – Linear spans- Row			
	and Columns spaces of a matrix .			
II	Unit II: Linear Transformation : Definitions	18	Up to K4	CLO 2
	and examples-Some basic properties of Linear			
	Transformation-Matrices as linear transformation-			
	Rank and Nullity of Linear Transformation			
III	Unit III: Linear Transformation: Singular and	18	Up to K4	CLO 3
	non-singular Linear Transformation-Invertible			
	Linear Transformation –Dual Spaces			
IV	Unit IV: Unitary Spaces: Unitary spaces-Norm	18	Up to K5	CLO 4
	of a vector-Orthogonality and Orthonormality –			
	Hernitian Inner Products and Matrices			
V	Unit V: Bilinear and Quadratic Form:	18	Up to K5	CLO 5
	Bilinear Form – Bilinear Forms and Matrices –			
	Change of basis-Rank of Bilinear Form-			
	symmetric and skew symmetric bilinear forms			

Book for study:

R.D Sharma .Ritu Jain., "Theory and Problems of Linear Algebra",

I.K. International Publication House Private Limited, New Delhi and Bangalore.

Chapters:

Unit	Chapters	Sections
Ι	2	2.4,2.4.1, 2.5,2.7,2.7.1
II	3	3.2 ,3.3 ,3.3.1 ,3.5
III	3	3.8, 3.9, 3.10
IV	8	8.2 ,8.3, 8.4,8.5
V	10	10.2, 10.4, 10.4.1,
		10.4.2, 10.5

Books for Reference:

- 1. Herstein. N.,(1975), Topics in Algebra, Wiley Eastern Limited, New Delhi.
- 2. David C.Lay, (2005), *Linear Algebra and its Applications*, Pearson Education Pvt.Ltd, India, Third Edition, Fifth Indian Reprint.
- 3. Jacobson.N., (1980), Basic Algebra, Vols. I&II, Freeman, Hindustan Publishing Company, New Delhi.
- 4. Kenneth Hoffman and Ray Kunze, (2011), Linear Algebra, Prentice Hall of India Private Limited, New Delhi, Second Edition.

Web Resources:

- 1. https://nptel.ac.in/courses/111/106/11110651/
- 2. https://nrich.maths.org/1422
- 3. https://www.math.brown.edu/dabramov/MA/f1314/251/Zijian-notes.pdf

Pedagogy:

Chalk and talk, Power point presentation, Group Discussion, Quiz, Assignment and Seminar

Rationale for nature of Course:

Knowledge and Skill:

- 1. Demonstrate accurate and efficient use of linear algebra techniques as they relate to the concepts like linear transformation, polynomial etc.,
- 2. Apply problem solving using linear algebra techniques applied to diverse situations in physics, computer science and other mathematical contexts.

Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussions and other practical works and also insists them to check the reference books and web resources.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

COs	Course Outcomes	K-level
CO1	Apply the concepts of vector spaces and linear transformations.	Up to K4
CO2	Analyze the linear dependence and linear independence of vector spaces	Up to K4
	and inner product.	
CO3	Analyze the algebra of linear transformations and matrix of a linear	Up to K4
	transformation.	
CO4	Categorize the characteristic polynomials and minimal polynomials.	Up to K5
CO5	Demonstrate the primary decomposition and Projections.	Up to K5

K1- Remembering facts with specific answers.

K2- Basic understanding of facts.

K3- Application oriented -Solving Problems.

K4- Analyzing, examining and making presentations with evidence.

K5- Evaluating, making Judgments based on criteria.

Mapping of Course	Learning Outcomes	s (CLOs) with	Programme	Outcomes (POs)
-------------------	-------------------	---------------	-----------	-----------------------

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	2	3	3	3	3
CLO2	2	2	1	3	3	3
CLO3	3	3	2	2	1	3
CLO4	3	3	2	2	1	3
CLO5	2	2	2	3	3	3

1.Basic level 2. Intermediate level 3. Advanced level

Lesson plan:

Unit	Description	Hours	Total	Mode
			Hours	
Ι	Vector Spaces : Sub spaces –Algebra of	6	18	Chalk and talk
	Subspaces-Quotient Spaces – Linear spans-			
	Row and Columns spaces of a matrix .			
	Quotient Spaces	6		
	Linear spans- Row and Columns spaces of a	6		
	matrix			
II	Definitions and examples-Some basic	6	18	Chalk and talk
	properties of Linear Transformation			
	Matrices as linear transformation	6		
	Rank and Nullity of Linear Transformation	6		
III	. Linear Transformation: Singular and	6	18	Chalk and talk
	non-singular Linear Transformation			
	Invertible Linear Transformation	6		
	Dual Spaces	6		
IV	Unitary Spaces: Unitary spaces	6	18	Chalk and talk,
	Norm of a vector-Orthogonality and	6		Power point
	Orthonormality			presentation
	Hernitian Inner Products and Matrices	6		
V	Bilinear and Quadratic Form: Bilinear	6	18	Chalk and talk,
	Form – Bilinear Forms and Matrices –			Power point
	Change of basis-Rank of Bilinear Form-			presentation
	symmetric and skew symmetric bilinear			1
	forms			
	Change of basis-Rank of Bilinear Form	6		
	symmetric and skew symmetric bilinear	6		
	forms			
		Total	9 <mark>0</mark>	

Course Designer:Mrs.R.Shanmugam

E.M.G.YADAVA WOMEN'S COLLEGE, MADURAI-14.

Department of Mathematics							IIM	.Sc.
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total
					Hours/week			
III	Elective V	230PMADSE3A	Resource	3	4	25	75	100
			Management					
			Techniques					

Nature of the Course				
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented		

Course Objective: To enable the students to become aware of and appreciate the potential of the theory of optimization and to introduce various decision making tools and techniques based on optimization.

.Course Content:

Unit	Course Content	Hours	K Level	CLO
Ι	Revised Simplex Method Introduction,	12	Up to K4	CLO 1
	Standard forms for Revised Simplex Method,			
	Computational Procedure for Standard Form I,			
	Comparison of Simplex Method and Revised			
	Simplex Method.			
II	Integer Linear Programming Introduction,	12	Up to K4	CLO 2
	Types of Integer Programming Problems,			
	Enumeration and Cutting Plane Solution			
	Concept, Gomory's All Integer Cutting Plane			
	Method, Branch and Bound Method.			
III	Dynamic Programming Introduction. Dynamic	12	Up to K4	CLO 3
	Programming Terminology, Developing			
	Optimal Decision Policy, Dynamic Programming			
	Under Certainty,			
II.	Deterministic Inventory Control Model	10	Un to V5	CLO 4
IV	Introduction The Meaning of Inventory Control	12	Up 10 K3	CLU 4
	Functional Role of Inventory Reasons of			
	Carrying Inventory Eactors Involved in			
	Inventory Problem Analysis Inventory Model			
	huilding Inventory Control Models without			
	Shortage			
V		12	Up to K5	CLO 5
•	Sequencing Problem Introduction – Notations,	12	op to no	CLO 5
	Terminology and Assumptions-Processing n			
	Jobs through Two machine- Processing n jobs			
	through Three machine- Processing n jobs			
	through m machine.			

Book for study: J.K. Sharma, *Operations Research Theory and Applications*, Second Edition, Macmillan (India) New Delhi 2005

Chapters:

Unit	Chapter	Sections
Ι	26	26.1 to 26.4
II	7	7.1, to 7.4 & 7.6
III	22	22.1 to 22.4
IV	14	14.1 to 14.7
V	20	20.1 to 20.5

Books for Reference:

1.J. Lieberman, F.S. Hiller, *Introduction to Operations Research*, 7th Edition, Tata- McGraw Hill Company, New Delhi, 2001.

2.Kanti Swarup, Manmohan, P.K. Gupta, *Operations Research*, , Sultan & Chand Publications, 2003.

3. Hamdy A. Taha, Operations Research, , (Edition 7), Prentice - Hall of India

Private Limited, New Delhi, 1997.

Web Resources:

- 1. <u>https://web.mit.edu/15.053/www/AppliedMathematicalProgramming.pdf</u>
- 2. http://www.dl.behinehyab.com/Ebooks/LP/LP015_800845_www.behinehyab.com.pdf
- 3. https://coral.ise.lehigh.edu/~ted/teaching/ie406/

Pedagogy: Chalk and talk, Power Point Presentation, Group Discussion

Rationale for nature of Course:

Knowledge and Skill:

This Course deals with the Revised Simplex Methods and relate the Integer Linear programming and Dynamic Programming Problems. It also focuses on Deterministic Inventory Control Model and Sequencing Problem

E.M.G.YADAVA WOMEN'S COLLEGE, MADURAI-14.

Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussions and other practical works and also insists them to check the reference books and web resources.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

COs	Course Outcomes	K-level
CO1	Understand the Standard forms for Simplex Method	Up to K4
CO2	Analyze the Integer Linear Programming Problems,	Up to K4
CO3	Describe Dynamic Programming Terminology,	Up to K4
CO4	Understand the deterministic inventory control model	Up to K5
CO5	Analyze sequencing problem	Up to K5

- K1- Remembering facts with specific answers.
- K2- Basic understanding of facts.
- K3- Application oriented -Solving Problems.
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria.

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	2	3	2	3	3	2
CLO2	3	3	2	3	3	3
CLO3	1	2	2	3	3	3
CLO4	2	2	3	3	2	3
CLO5	2	2	3	2	2	3
CLO5	2	2	3	2	2	3

1.Basic level

^{2.} Intermediate level

^{3.} Advanced level

Lesson plan:

Unit	Description	Hours	Total	Mode
			Hours	
Ι	Introduction, Standard forms for	4	12	Chalk and talk,
	Revised Simplex Method,			Power Point
	Computational Procedure for Standard			Presentation
	Form I,			
	Comparison of Simplex	4		
	Method and Revised Simplex Method.	4		
II	Introduction, Types of Integer Linear	4	12	Chalk and talk,
	Programming Problems, ,			Power Point
	Enumeration and Cutting Plane	4		Presentation
	Solution Concept			
	Gomory's All Integer Cutting Plane	4		
	Method, Branch and Bound Method			
III	Introduction, Dynamic Programming	4	12	Chalk and talk,
	Terminology,			Power Point
	Developing Optimal Decision Policy,	4		Presentation
	Dynamic Programming Under	4	-	
	Certainty,			
IV	Introduction, The Meaning of Inventory	4	12	Chalk and talk,
	Control, Functional Role of			Power Point
	Inventory,			Presentation
	Reasons of Carrying Inventory,	4		
	Factors Involved in Inventory Problem			
	Analysis,		-	
	Inventory Model building, Inventory	4		
	Control Models without Shortage,			
V	Introduction – Notations, Terminalogy	4	12	Chalk and talk,
	and Assumptions.		-	Power Point
	Processing n jobs through Two	4		Presentation
	machine- Processing n jobs through			
	Three machine.			
	Processing n jobs through m	4		
	machine.			
		Total	60	

Course Designer :Dr.Mrs.R.Mangayarkarasi

E.M.G.YADAVA WOMEN'S COLLEGE, MADURAI-14.

Department of Mathematics						II M.Sc.		
Sem	Category	Course Code	Course	Credits	Contact	CIA	SE	Total
			Title		Hours/week			
III	Elective	23OPMADSE3B	Stochastic Processes	3	4	25	75	100

Nature of the Course				
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented		

Course Objectives:

- 1. Acquire intense Knowledge on the underlying concepts of stochastic processes.
- 2. Familiarize with Markov chain and system.
- 3. Obtain in-depth understanding of birth and death process.
- 4. Develop the acquaintance with applications of Markov process.
- 5. Gain understanding the knowledge of renewal process and theory.

Course Content:

Unit	Course Content	Hours	K Level	CLO
Ι	Stochastic Processes	12	Up to K4	CLO 1
	Introduction - Specification of Stochastic Processes			
	– Stationary Processes – Martingales. Markov			
	Chains: Definitions and Examples – Higher			
	Transition Probabilities – Generalization of			
	independent Bernoulli trials: Sequence of Chain-			
	Dependent Trials			
II	Markov Chains	12	Up to K4	CLO 2
	Stability of Markov System – Graph Theoretic			
	Approach – Markov Chain with Denumerable			
	Number of States – Reducible Chains – Statistical			
	Inference for Markov Chains.			
III	Markov Process with discrete state space	12	Up to K4	CLO 3
	Poisson Process: Poisson Process and Related			
	Distributions – Generalizations of Poisson Process –			
	Birth and death Process – Markov Process with			
	Discrete S tate Space (Continuous time Markov			
	chains).			
IV	Markov Process with continuous state space	12	Up to K5	CLO 4
	Introduction: Brownian Motion – Weiner Process			
	– Differential E quations for Weiner Process –			
	Kolmogorov Equations – First Passage Time			
	Distribution for Weiner Process.			
V	Renewal Process and Theory	12	Up to K5	CLO 5
	Renewal Process and Renewal Equation – Stopping			
	Time – Wald's Equation – Renewal theorems –			
	Delayed and Equilibrium Renewal Process.			

Book for study:

J. Medhi, Stochastic Processes (2nd Edition), New Age International, 1992. **Chapters:**

Unit	Chapters	Sections
Ι	2,3	2.1 to 2.4 and 3.1 to 3.3
II	3	3.6 to 3.10
III	4	4.1 to 4.5
IV	5	5.1 to 5.5
V	6	6.1 to 6.6

Books for Reference:

1.S. Karlin, A first course in Stochastic Processes, (2nd Edition), Academic Press, 1958.

2.U.N. Bhat, Elements of Applied Stochastic Preesses, John Wiley Sons, 1972.

3.E. Cinlar, Introduction to Stochastic Processes, PHI, 1975

4.S.K. Srinivasan and A. Vijayakumar, Stochastic Processes, Narosa, 2003. **Web Resources:**

- 1. https://z-lib.io/author/J.%20Medhi
- 2. https://youtu.be/i3AkTO9HLXo?si=SY8edeQBbh0v2x67
- 3. https://youtu.be/MSBxSxap7_U?si=ASFFypcNG-x7lJAk

Pedagogy:

Chalk and Talk, Power Point Presentation, Group Discussion.

Rationale for nature of Course: Knowledge and Skill:

The purpose of this course is to equip students with theoretical knowledge and practical skill which are necessary for the analysis of stochastic dynamical systems in economics, engineering and other fields. More precisely, the objectives are study of the basic concepts of the theory of stochastic processes; study of various properties and characteristics of processes; study of the methods for describing and analyze complex stochastic models. The course provides a necessary theoretical basis for studying the course in stochastic, such as financial mathematics, quantitative finance, stochastic modelling.

Activities to be given:

We will Providing students with intellectual problems, theory application problems, group discussion and other practical works and also insist them to check the books for references and web resources.

Course Learning Outcome (CLOs)

Cos	Course Outcomes	K-level
CO1	Correlate the concepts of stochastic processes with illustrations	Up to K4
CO2	Illustrate Markov chain and its applications	Up to K4
CO3	Compare the conceptualization of pure birth and death process	Up to K4
CO4	Infer the concepts of Markov Process with continuous state space	Up to K5
CO5	Study the concepts of Renewal Process and Theory	Up to K5

- K1- Remembering facts with specific answers.
- K2- Basic understanding of facts.
- K3- Application oriented -Solving Problems.
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria.

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	2	3	2	2	2	1
CLO2	1	2	3	2	2	1
CLO3	2	2	2	1	1	1
CLO4	1	1	3	2	2	1
CLO5	2	2	2	1	1	1

1.Basic level

2. Intermediate level

3. Advanced level

Lesson plan:

Unit	Description	Hours	Total	Mode
			Hours	
T		6	10	
1	Stochastic Processes	6	12	Chalk and Talk
	Introduction - Specification of Stochastic			
	Processes – Stationary Processes –			
1	Martingales.			
	Markov Chains: Definitions and Examples –	6		
	Higher Transition Probabilities –			
	Generalization of independent Bernoulli			
	trials: Sequence of Chain-Dependent Trials			
II	Markov ChainsStability of Markov System	6	12	Chalk and Talk
	- Graph Theoretic Approach			
	Markov Chain with Denumerable Number	6		
	of States – Reducible Chains – Statistical			
	Inference for Markov Chains.			
III	Markey Ducess with diamete state succes	6	12	Chalk and Talk
	Markov Process with discrete state space			
	Poisson Process: Poisson Process and Related			
	Distributions – Generalizations of Poisson			
	Process Pirth and death Process Markov Process	6		
	with Discrete State Space (Continuous	0		
	time Markov chains)			
187	time Warkov chains).	(10	
IV	Markov Process with continuous state	0	12	Chalk and Talk & PPT
	space			
	Introduction: Brownian Motion - Weiner			
	Process – Differential Equations for			
	Weiner Process			
	Kolmogorov Equations – First Passage Time	6		
	Distribution for Weiner Process.			
V		6	12	Chalk and Talk & PPT
	Renewal Process and Theory			
	Renewal Process and Renewal Equation –			
	Stopping Time			
	Wald's Equation – Renewaltheorems –	6		
	Delayed and Equilibrium Renewal Process.			
		Total	60	

Course Designer:Mrs.R.Revathi

E.M.G.YADAVA WOMEN'S COLLEGE, MADURAI-14.

Department of Mathematics							II M.	.Sc.
Sem	Category	Course Code	Course Title	Credits	Contact Hours/week	CIA	SE	Total
III	SEC	23OPMASEC3P	Mathematical	2	2	25	75	100
			Documentation using					
			Latex					

Nature of the Course				
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented		

Course Objectives:

Customize Document Layout, Organization. and Master the Mathematical Formulas.

Course Content:

Unit	Course Content	Hours	K Level	CLO
Ι	Introduction: Introduction to LaTeX-	6	Up to K4	CLO 1
	Installation of MikTex- Required Components			
	of a LaTeX Document- Error Messages.			
	Document Structure: Page Numbering and			
	Headings- Creating a Title Page- Creating a			
	Title Page, Continued-Sections-Cross-			
	References- Table of Contents- Abstracts.			
II	Spacing: Spacing Between Words- Fine-	6	Up to K4	CLO 2
	Tuning Spacing in Math-Mode- Double			
	Spacing- Sloppy Line Breaks- Enlarging Pages			
	-Font Style: Hyphenation- The LATEX Logo-			
	Quotation Marks- Changing the Appearance of			
	Words.			
III	Mathematical Formulas: Greek Letters-	6	Up to K4	CLO 3
	Exponents and Subscripts- Above and Below-			
	Fractions- Functions- Sums, Integrals, and			
	Limits- Roots- Text in Math Displays-			
	Operators- Relations- Negated Symbols- More			
	Symbols- Tables, Arrays, and Lists:			
	Constructing Arrays- Constructing Tables-			
	Multiline Equations: Multi-line Equations-			
	Bracket Symbols- Dots- Indenting.			
IV	Text Formatting: Centering Text- Special	6	Up to K5	CLO 4
	Headers- Extended Quotation- Bulleted Lists-			
	Numbered Lists- Filling a Line- Line Breaks.			
V	Bibliography and Compound Expressions:	6	Up to K5	CLO 5
	Bibliographies- Slides: The Slide Class- How			
	to Use the Slides Class- Including Graphics in			
	Your Document: Graphic File Formats-			
	Graphics Package- Including Graphics Within			
	Your Document.			

Book for study:

Guide to LATEX, fourth edition, helmut kopka, Patrick W.Daly

Chapters:

Unit	Page .No
Ι	4-10
II	22-24
III	11-21,25-30
IV	31-33
V	34-36

Books for Reference

- 1. The LaTeX Companion by Frank Mittelbach, Michel Goossens, Johannes Braams, David Carlisle, Chris Rowley, 2004, Addison-Wesley Professional
- 2. LaTeX: A Document Preparation System by Leslie Lamport, 1994, Addison-Wesley Professional
- 3. LaTeX Beginner's Guideby Stefan Kottwitz, 2011, Packt Publishing

Web Resources:

- 1. https://www.tug.org/twg/mactex/tutorials/ltxprimer-1.0.pdf
- 2. <u>https://www.latex-project.org/help/books/bookpart_tlc2-ch0.pdf</u>
- 3. https://www.heinrichfleck.net/latex/Lamport%20.pdf

Pedagogy: Chalk and Talk, PPT, Group discussion.

Rationale for nature of Course:

LaTeX proficiency requires understanding syntax, professional formatting, mathematical typesetting, package use, citation management, version control integration, error troubleshooting, layout customization, and workflow optimization, honed through practice and engagement.

Entrepreneurial:

Encourage students to explore opportunities for offering LaTeX typesetting and document preparation services to researchers, academics, and professionals, leveraging their expertise for freelance or consulting work.

Activities to be given:

1.Create a document template incorporating various LaTeX features such as sections, equations, tables, and citations, then ask learners to populate it with content to practice formatting and typesetting.

2.Assign a collaborative writing task where students use LaTeX with version control to collectively draft and edit a document, fostering teamwork and proficiency in collaborative workflows.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

Cos	Course Outcomes	K-level
CO1	Be Mastery over LaTeX.	Up to K4
CO2	Understand Document Layout and Organization	Up to K4
CO3	Manage operators Mathematical Formulas	Up to K4
CO4	Expertise in Text Formatting	Up to K5
CO5	Create Slides, Graphics Package	Up to K5

- K1- Remembering facts with specific answers.
- K2- Basic understanding of facts.
 - K3- Application oriented -Solving Problems.
 - K4- Analyzing, examining and making presentations with evidence.
 - K5- Evaluating, making Judgments based on criteria.

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	3	2	2	3	-
CLO2	3	3	1	2	2	-
CLO3	3	2	2	3	3	-
CLO4	3	3	2	1	2	-
CLO5	3	3	3	3	3	-

1.Basic level

2. Intermediate level

3. Advanced level

Lesson plan:

Unit	Description	Hours	Total	Mode
			Hours	
Ι	Introduction to LaTeX- Installation of MikTex-	3	6	Chalk and
	Required Components of a LaTeX Document-	C	Ū	Talk &PPT
	Error Messages.			
	5			
	Document Structure: Page Numbering and	3		
	Headings- Creating a Title Page- Creating a			
	Title Page, Continued-Sections-Cross-			
	References- Table of Contents- Abstracts.			
П	Spacing: Spacing Between Words- Fine-Tuning	3	6	Chalk and
	Spacing in Math-Mode- Double Spacing-			Talk
	Sloppy Line Breaks- Enlarging Pages			
	Font Style: Hyphenation- The LATEX Logo-	3		
	Quotation Marks- Changing the Appearance of			
	words.			
III	Mathematical Formulas: Greek Letters-	3	6	Chalk and
	Exponents and Subscripts- Above and Below-			Talk& PPT
	Fractions- Functions- Sums, Integrals, and			
	Limits- Roots- Text in Math Displays-			
	Operators- Relations- Negated Symbols- More			
	Symbols.			
	Tables, Arrays, and Lists: Constructing Arrays-	3		
	Constructing Tables- Multiline Equations:			
	Multi-line Equations- Bracket Symbols- Dots-			
	Indenting.			
IV	Text Formatting: Centering Text- Special	3	6	Chalk and
	Headers- Extended Quotation- Bulleted Lists-			Talk & PPT
	Numbered Lists- Filling a Line- Line Breaks	3		
V	Bibliography and Compound Expressions:	3	6	Chalk and
	Bibliographies- Slides: The Slide Class- How			Talk & PPT
	to Use the Slides Class-			
	Including Graphics in Your Document: Graphic	3		
	File Formats- Graphics Package- Including			
	Graphics Within Your Document.			
		Total	30	

Course Designer:Mrs.R.Revathi

Department of Mathematics						II	M.Sc.	
Sem	Category	Course Code	Course Title	Credits	Contact Hours/week	CIA	SE	Total
IV	Core	230PMA41	Functional Analysis	5	6	25	75	100

Nature of the Course						
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented				

Course Objectives:

- 1.To understand the Concept of Banach Spaces,to study the open mapping theorem and operators.
- 2.To understand the concepts of orthonormal Sets, and to study some operators like adjoint and unitary.
- 3.To acquire the knowledge of Banach algebras leading to the spectral theory of operators.

Course Content:

Unit	Course Content	Hours	K Level	CLO
Ι	Banach Spaces:	18	Up to K4	CLO 1
	The definition and some examples – Continuous			
	linear transformation – The Hahn –Banach			
	Theorem			
II	Banach Spaces:(continued)	18	Up to K4	CLO 2
	The natural imbedding of N in N** The open			
	mapping theorem – The conjugate of an			
	operator			
III	Hilbert Spaces :	18	Up to K4	CLO 3
	The definition and some simple properties -			
	Orthogonal complements – Orthonormal sets.			
IV	Hilbert Spaces(continued) : The Conjugate \mathbf{H}^* . The adjoint of an operator	18	Up to K5	CLO 4
	- Self adjoint operators .Normal and unitary			
	operators. Projections			
V	Finite – Dimensional Spectral Theory :	18	Up to K5	CLO 5
	Matrices – Determinants and the spectrum of an			
	operator - The spectral theorem			

Book for study:

Simmons G.F., *Introduction to Topology and Modern Analysis*, Tata McGraw Hill Publishing Company Limited, New Delhi (2004B)

Chapters:

Unit	Chapters	Sections
Ι	9	46, 47, 48
II	9	49, 50, 51
III	10	52,53, 54
IV	10	55, 56, 57, 58, 59
V	11	60, 61, 62

Books for Reference:

- 1. Balmohan Vishnu Limaye, Functional Analysis, 3rd Edition, Wiley Eastern Limited (1986)
- 2. Choudhary Sudarsan Nanda.B *Functional Analysis with Application*, New Age International Publication.
- 3. Ponnusamy S. Foundation of Functional Analysis. Narosa Publishing House Pvt., Ltd 2012

Web Resources:

- 1. http://www.pdfdrive.com/functionl-alanalysis-e158374735.html
- 2.https://www.ferrbookcentre.net/maths-books-downland/Functional-Analysis-pdf.html
- 3. https://examupdates.in/functional/-analysis-book/
- 4. https://wwwe-booksdirectory.com/listing.php?category=47
- 5. https://link.springer.com/book/10.1007/978-3-642-61859-8

Pedagogy:

Chalk and Talk, Power point presentation, Group Discussions, Quiz, Assignment and Seminar

Rationale for nature of Course:

Knowledge and Skill:

The student has knowledge with the concept from functional analysis including the Hahn-Banach theorem , open mapping and Hilbert spaces

Activities to be given:

We will be providing student with intellectual problem, theory application problems and other practical works and also insist them to check the books for references and web resource.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

COs	Course Outcomes	K-level
CO1	Acquire the fundamentals of normed, Banach & Hilbert Spaces	Up to K4
CO2	Prove standard theorems such as Open mapping theorem, Closed graph	Up to K4
	theorem, Uniform boundedness theorem and Spectral theorem	
CO3	Recall the results in Banach Spaces & Hilbert Spaces	Up to K4
CO4	Analyze the behavior of linear operators on normed spaces	Up to K5
CO5	Elucidate the operators and find the spectrum of operators.	Up to K5

K1- Remembering facts with specific answers.

- K2- Basic understanding of facts.
- K3- Application oriented -Solving Problems.
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria.

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	1	2	2	1	3
CLO2	3	2	2	2	1	3
CLO3	3	2	2	3	2	3
CLO4	3	3	1	1	1	3
CLO5	3	2	1	2	1	3

1.Basic level

2. Intermediate level

3. Advanced level

Lesson plan:

Unit	Description	Hours	Total	Mode
			Hours	
Ι	The definition and some examples	6	18	Chalk and Talk
	Continuous linear transformation	6		
	The Hahn –Banach Theorem	6		
II	The natural imbedding of N and N**	6	18	Chalk and Talk
	The Open mapping theorem	6		
	The conjugate of an opertior	6		
III	Hilbert Spaces:	6	18	Chalk and Talk
	The definition and some properties			
	Orthogonal compliments	6		
	Orthonormal sets	6		
IV	The conjugate space H* -The adjoint of an	6	18	Power point
	operator			presentation &
	Self adjoint operators	6		Seminar
	Normal and Unitary operators-Projections	6		
V	Finite – Dimensional Spectral Theory :	6	18	Power point
	Matrices			presentation & Seminar
	Determinants and the spectrum of an	6		
	operator			
	The spectral theorem	6		
			90	
	Total Hours			

Course Designer: Mrs. D.Selvamathi

E.M.G.YADAVA WOMEN'S COLLEGE, MADURAI-14.

Department of Mathematics							II M.Sc.		
Sem	Category	Course	Course Title	Credits	Contact	CIA	SE	Total	
		Code			Hours/week				
IV	Core	230PMA42	Differential Geometry	5	6	25	75	100	

	Nature of the Course	
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented

Course Objectives:

- 1. To impart the knowledge of curves on surfaces, curvature and torsion.
- 2. To develop the concept of Surface of revolution, Helicoids, Metric space and Direction ratios
- 3. To demonstrate the construction of new surface like Geodesic.
- 4. To know the concept of second fundamental form and its principal of curvature

I.I.s.t	Course Content		K	CLO
Umt	Course Content	Hours	Level	CLO
Ι	Space curves: Definition of a space curve – Arc length	18	Up to	CLO 1
	- tangent - normal and binormal - curvature and		K4	
	torsion – contact between curves and surfaces- tangent			
	surface- involutes and evolutes- Intrinsic equations –			
	Fundamental Existence Theorem for space curves-			
	Helies.			
II	Intrinsic properties of a surface: Definition of a	18	Up to	CLO 2
	surface – curves on a surface – Surface of revolution –		K4	
	Helicoids – Metric- Direction coefficients – families of		111	
	curves- Isometric correspondence- Intrinsic properties.			
III	Geodesics: Geodesics – Canonical geodesic equations	18	Up to	CLO 3
	- Normal property of geodesics- Existence Theorems -		K4	
	Geodesic parallels – Geodesics curvature- Gauss-			
	Bonnet Theorem – Gaussian curvature- surface of			
	constant curvature.			
IV	Non Intrinsic properties of a surface:	18	Up to	CLO 4
	The second fundamental form- Principle curvature –		K5	
	Lines of curvature			
V	Non Intrinsic properties of a surface:	18	Up to	CLO 5
	Developable - Developable associated with space		K5	
	curves and with curves on surface - Minimal surfaces -			
	Ruled surfaces			

Book for study:

T.J.Willmore, An Introduction to Differential Geometry, Oxford University Press,(17th Impression) New Delhi 2002. (Indian Print)

Chapters:

Unit	Chapter	Sections
Ι	Ι	1 to 9.
II	II	1 to 9.
III	II	10 to 18.
IV	III	1 to 3
V	III	4 to 8

Books for Reference:

- 1. Struik, D.T. Lectures on Classical Differential Geometry, Addison Wesley, Mass. 1950.
- 2. Kobayashi. S. and Nomizu. K. *Foundations of Differential Geometry*, Inter science Publishers, 1963.
- 3. Wilhelm Klingenberg: *A course in Differential Geometry*, Graduate Texts in Mathematics, Springer-Verlag 1978.
- 4. J.A. Thorpe *Elementary topics in Differential Geometry*, Under- graduate Texts in Mathematics, Springer Verlag 1979.

Web Resources:

http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics, http://www.opensource.org, www.physicsforum.com

Pedagogy:

Chalk and Talk, Power point presentations, Group Discussions, Quiz, Assignment and Seminar.

Rationale for nature of Course:

Knowledge and Skill:

Knowledge, Problem Solving, Analytical ability, Professional Competency, Professional Communication and Transferrable Skill

Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussion and other practical works and also insist them to check the Books for References and web resources

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

COs	Course Outcomes	K-level
CO1	Explain space curves, Curves between surfaces, metrics on a surface,	Up to K4
	fundamental form of a surface and Geodesics.	
CO2	Evaluate these concepts with related examples	Up to K4
CO3	Compose problems on geodesics.	Up to K4
CO4	Recognize applicability of developable	Up to K5
CO5	Construct and analyze the problems on curvature and minimal surfaces	Up to K5

- K1- Remembering facts with specific answers.
- K2- Basic understanding of facts.
- K3- Application oriented -Solving Problems.
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	1	3	2	3	3
CLO2	2	1	3	1	3	3
CLO3	3	2	3	1	3	3
CLO4	1	2	3	2	3	3
CLO5	3	1	2	3	3	3

1.Basic level

2. Intermediate level

3. Advanced level

Lesson plan:

Unit	Description	Hours	Total	Mode
			Hours	
Ι	Definition of a space curve ,Arc length,	9		Chalk & Talk
	tangent ,normal and binormal, curvature and		18	Churk & Turk
	torsion, contact between curves and surfaces			
	tangent surface, involutes and evolutes,	9		
	Intrinsic equations, Fundamental Existence			
	Theorem for space curves, Helies.			
II	Definition of a surface, curves on a surface,	8		Chalk & Talk
	Surface of revolution,	-	18	
	Helicoids, Metric-Direction coefficients,	10		
	families of curves, Isometric correspondence,	-		
	Intrinsic properties.			
III	Geodesics, Canonical geodesic equations,	9	18	PowerPoint
	Normal property of geodesics,			Presentation & Seminar
	Existence Theorems, Geodesic parallels	9		
	,Geodesics ,curvature, Gauss, Bonnet			
	Theorem, Gaussian curvature, surface of			
	constant curvature.			
IV	Non Intrinsic properties of a surface:	6		DormanDaint
	The second fundamental form, Principle	0	18	Presentation Seminar
	curvature, Lines of curvature,			i resentation, seminar
X 7	Davalanshia			Assignment
V	Developable	6	18	PowerPoint
			10	Presentation & Seminar
	Developable associated with space curves	8		
	and with curves on surface,			
	Minimal surfaces, Ruled surfaces	4		
		4		
		Total	90	

Course Designer: Mrs. D.Selvamathi

Department of Mathematics					II M.Sc.			
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total
					Hours/week			
1V	Elective	230PMADSE4A	Mathematical Python	3	4	25	75	100

	Nature of the Course	
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented

Course Objectives:

- 1. To Demonstrate the basic concepts of python programming with the help of data types, operators and expressions.
- 2. Divide a Python program into functions and solve mathematical problems.
- 3. Make use of control statements for altering the sequential execution of programs in solving.
- 4. Develop Python lists, and dictionaries for compound data.
- 5. To Interpret Tuples and Files in Python.

Course Content

Unit	Course Content	Hours	K Level	CLO
Ι	The Way of the Program: What is a Program?	12	Up to K4	CLO 1
	- Running Python – The First Program –			
	Arithmetic Operators - Values and Types -			
	Formal and Natural Languages.			
	Variables Expressions and Statements:			
	Assignment statements - Variable Names -			
	Expressions and Statements - Script Mode -			
	Order of Operations – String Operations –			
	Comments.			
II	Functions: Function Calls – Math Functions –	12	Up to K4	CLO 2
	Composition – Adding New Functions –		_	
	Definitions and Uses - Flow of Execution -			
	Parameters and Arguments - Variables and			
	Parameters Are Local - Stack Diagrams -			
	Fruitful Functions and Void Functions - Why			
	Functions?			
	Conditionals and Recursion: Floor Division			
	and Modulus – Boolean Expressions – Logical			
	Operators – Conditional Execution – Alternative			
	Execution – Chained Conditionals – Nested			
	Conditionals – Recursion – Stack Diagram for			

	Recursive Functions – Infinite Recursion – Keyboard Input.			
III	Iteration: Reassignment – Updating Variables	12	Up to K4	CLO 3
	- The While Statement - break - Square Roots			
	– Algorithms. Strings: A String is a Sequence –			
	len – Traversal with a for Loop – String Slices –			
	Strings are Immutable – Searching – Looping			
	and Counting – String Methods – The in			
	Operator – String Comparison.			
IV	Lists: A List Is a Sequence – Lists Are Mutable	12	Up to K5	CLO 4
	- Traversing a List - List Operations - List Slices			
	– List Methods – Map, Filter and Reduce –			
	Deleting Elements – Lists and Strings – Objects			
	and Values – Aliasing – List Arguments.			
	Dictionaries: A Dictionary Is a Mapping –			
	Dictionary as a Collection of Counters – Looping			
	and Dictionaries - Reverse Lookup -			
	Dictionaries and Lists – Memos – Global			
	Variables.			
V	Tuples: Tuples Are Immutable – Tuple	12	Up to K5	CLO 5
	Assignment – Tuples as Return Values –			
	Variable Length Assignment Tuples – Lists and			
	Tuples – Dictionaries and Tuples –Sequences of			
	Sequences.			
	Files: Persistence – Reading and Writing –			
	Format Operator – Filenames and Paths –			
	Catching Exceptions – Databases – Pickling –			
	Pipes – Writing Modules.			

Book for study:

Allen B. Downey, Think Python, 2nd Edition, Shroff Publishers and Distributors Pvt. Ltd., India, Sixth Reprint, 2019.

Chapters:

Unit	Chapters/Sections
Ι	1 & 2 (Except Debugging)
II	3 & 5 (Except Debugging)
III	7 & 8 (Except Debugging)
IV	10 & 11 (Except Debugging)
V	12 & 14 (Except Debugging)

Books for Reference:

1. M. Lutz and D. Ascher, Learning Python: Powerful Object-Oriented Programming, 4th Edition, O'Reilly, 2009.

2. R. Thareja, Python Programming: Using Problem Solving Approach, Oxford University Press, 2017.

3. H.P. Langtangen, A Primer on Scientific Programming with Python, Springer- Verlag, Berlin, 2016.

4. K.V.Namboothiri, Python for Mathematics Students, Version2.1, March2013.

5. Y. Zhang, An Introduction to Python and Computer Programming, Springer, Singapore, 2015.

Web Resources:

https://www.geeksforgeeks.org/how-to-run-a-python-script/ https://www.w3schools.com/python/python_tuples.asp

Pedagogy:

Chalk and Talk, Power point presentations, Group Discussions, Quiz, Assignment and Seminar.

Rationale for nature of Course:

Knowledge and Skill:

Knowledge in fundamental computer programming concepts and some mathematical principles.

Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussion and other practical works and also insist them to check the Books for References and web resources.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

Cos	Course Outcomes	K-level	
CO1	Demonstrate the basic concepts of python programming with the help of		
	data types, operators and expressions.		
CO2	Divide a Python program into functions and solve mathematical	Up to K4	
	problems.		
CO3	Make use of control statements for altering the sequential execution of	Up to K4	
	programs in solving		
CO4	Develop Python lists, tuples and dictionaries for compound data.	Up to K5	
CO5	Interpret Object Oriented Programming in Python.	Up to K5	

K1- Remembering facts with specific answers.

K2- Basic understanding of facts.

K3- Application oriented -Solving Problems.

K4- Analyzing, examining and making presentations with evidence.

K5- Evaluating, making Judgments based on criteria.

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	2	3	1	3	3
CLO2	3	1	3	2	3	3
CLO3	2	1	3	1	3	3
CLO4	3	2	3	1	3	3
CLO5	1	2	3	2	3	3
	1.Basic level	2.	Intermediate	e level	3. Advance	ed level

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

Lesson plan:

Unit	Description	Hours	Total Hours	Mode
I	The Way of the Program: What is a	6		Chalk & Talk
	Program? - Running Python – The First		12	
	Program – Arithmetic Operators – Values		12	
	and Types – Formal and Natural Languages.			
	Variables Expressions and Statements:	6		
	Assignment statements – Variable Names –			
	Expressions and Statements – Script Mode			
	– Order of Operations – String Operations			
	– Comments.			
II	Functions: Function Calls – Math Functions			
	- Composition - Adding New Functions -	6	12	Chaik & Taik
	Definitions and Uses – Flow of Execution –			
	Parameters and Arguments – Variables and			
	Parameters Are Local – Stack Diagrams –			
	Fruitful Functions and Void Functions –			
	Why Functions?			
	Conditionals and Recursion: Floor Division	6		
	and Modulus – Boolean Expressions –	0		
	Logical Operators – Conditional Execution			
	– Alternative Execution – Chained			
	Conditionals – Nested Conditionals –			
	Recursion – Stack Diagram for Recursive			
	Functions – Infinite Recursion – Keyboard			
	Input.			

Ш	Iteration: Reassignment – Updating Variables – The While Statement – break – Square Roots – Algorithms Strings: A String is a Sequence – len – Traversal with a for Loop – String Slices – Strings are Immutable – Searching – Looping and Counting – String Methods – The in Operator – String Comparison.	6	12	PowerPoint Presentation & Seminar
IV	Lists: A List Is a Sequence – Lists Are Mutable – Traversing a List – List Operations – List Slices – List Methods – Map, Filter and Reduce – Deleting Elements – Lists and Strings – Objects and Values – Aliasing – List Arguments. Dictionaries: A Dictionary Is a Mapping – Dictionary as a Collection of Counters – Looping and Dictionaries – Reverse Lookup – Dictionaries and Lists – Memos – Global Variables.	6	12	PowerPoint Presentation, Seminar Assignment
V	Tuples: Tuples Are Immutable – Tuple Assignment – Tuples as Return Values – Variable Length Assignment Tuples – Lists and Tuples – Dictionaries and Tuples – Sequences of Sequences. Files: Persistence – Reading and Writing – Format Operator – Filenames and Paths – Catching Exceptions – Databases – Pickling – Pipes – Writing Modules.	6	12	PowerPoint Presentation & Seminar
		Total	60	

Course Designer: A. Manickavalli

Department of Mathematics						II M.Sc.		
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total
					Hours/week			
IV	Elective	23OPMADSE4B	Discrete	3	4	25	75	100
			Mathematics					

Nature of the Course					
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented			

Course Objectives:

- 1. To construct mathematical arguments using logical connectives and quantifiers.
- 2.To understand how Boolean algebra can be used as a tool and mathematical model in the study of networks.
- 3. To learn how to work with some of the discrete structures which include sets, relations, function and recurrence relation.

Course Content:

Unit	Course Content	Hours	K Level	CLO
Ι	Counting: The Basics of Counting – The	12	Up to K4	CLO 1
	Pigeonhole Principle – Permutations and			
	Combinations- Binomial Coefficients and			
	Identities – Generalized Permutations and			
	Combinations.			
II	Advanced Counting Techniques	12	Up to K4	CLO 2
	Applications of Recurrence Relations			
	Solving Linear Recurrence Relations			
	Divide and Conquer Algorithms and			
	Recurrence Relations.			
III	Advanced Counting Techniques:	12	Up to K4	CLO 3
	Generating Functions – Inclusion-			
	Exclusion – Applications of Inclusion-			
	Exclusion.			
IV	Relations: Relations and their properties	12	Up to K5	CLO 4
	n-ary relations and their applications -			
	Representing relations Closures of			
	Relations – Equivalence Relations.			
V	Boolean Algebra: Boolean Functions –	12	Up to K5	CLO 5
	Representing Boolean Functions - Logic			
	Gates.			

Book for study:

Kenneth H. Rosen, 2022, "Discrete Mathematics and its Applications", McGraw Hill Education Private Limited, India.

Chapters:

Unit	Chapters	Sections
Ι	6	6.1 to 6.5
II	7	7.1 to 7.3
III	7	7.4 to 7.6
IV	8	8.1 to 8.5
V	11	11.1 to 11.3

Books for Reference:

- 1. Susanna S.Epp, 2010, "Discrete Mathematics with Applications", 4th Edition, Brooks/Cole Cengage Learning, Nelson Education Ltd, Canada.
- 2. J.P. Tremblay, R. Manohar, 2008, "Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill Publishing Company Limited, New Delhi, India.
- 3. Richard Johnsonbaugh, 2018, "Discrete Mathematics", 8th Edition, Pearson Education Limited, Harlow, USA.
- 4. Sharon C. Ross, Bernard Kolman, Robert Busby, 2015, "Discrete Mathematical Structures", 6th Edition, Pearson, India.
- 5. Grimaldi R.P and Ramana B.V, *Discrete and Combinatorial Mathematics- An Applied Introduction*, Pearson Education, 2004

Web Resources:

1.https://www.csie.ntu.tw/~sylee/courses/dm/resources.htm

2.https://www.discrete-math-hub.com/rsourcse-and-help.html

3.ttps://www.edx.org/learn/discreate-mathematics

Pedagogy:

Chalk and Talk, Power point presentations, Group Discussions, Quiz, Assignment and Seminar

Rationale for nature of Course:

Knowledge and Skill:

Develop a deeper conceptual understanding of the theoretical basis of Predicates, Quantifiers and Nest Quantifiers, Skill to apply the Lattices and Algebraic Systems and Switching Circuits.

Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussion and other practical works. We also guide them to refer books and web resources.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

COs	Course Outcomes	K-level
CO1	Recall basic counting principles and generalize the ideas in permutations	Up to K4
	and combinations	
CO2	Interpret recurrence relations and design algorithms	Up to K4
CO3	Make use of advanced counting technique to solve real life problems	Up to K4
CO4	Recall the concepts of relation and find the closures	
CO5	Apply the ideas of Boolean algebras in Logic gates	

K1- Remembering facts with specific answers.

- K2- Basic understanding of facts.
- K3- Application oriented -Solving Problems.
- K4- Analyzing, examining and making presentations with evidence.
- K5- Evaluating, making Judgments based on criteria.

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	3	1	1	3	3
CLO2	3	3	2	2	1	3
CLO3	3	3	2	2	2	3
CLO4	3	2	2	2	1	3
CLO5	3	3	2	2	1	3

1.Basic level

2. Intermediate level

3. Advanced level

Lesson Plan

Unit	Description	Hours	Total	Mode
			Hours	
	Counting: The Basics of Counting – The Pigeonhole	6		Chalk & Talk
	Principle – Permutations and Combinations			
I	Binomial Coefficients and Identities	6	12	Chalk & Talk
	– Generalized Permutations and			
	Combinations.			
	Advanced Counting Techniques: Applications of	6	12	Chalk & Talk
II	Recurrence Relations – Solving Linear Recurrence			
	Relations			
	Divide and Conquer Algorithms and	6	-	Chalk & Talk
	Recurrence Relations.			
	Advanced Counting Techniques: Generating	6	12	PPT, Chalk & Talk
III	Functions – Inclusion-Exclusion			
	Applications of Inclusion-Exclusion.	6	-	Seminar
	Relations: Relations and their properties - n-ary	6	12	Chalk & Talk
IV	relations and their applications			Seminar
	Representing relations Closures of	6	-	Chalk & Talk
	Relations – Equivalence Relations.			Seminar
	Boolean Algebra: Boolean Functions	6	12	Chalk & Talk
V				Seminar
	Representing Boolean Functions – Logic Gates.	6		Lecture, Quiz
	Total		60	

Course Designer:Dr.Mrs.G.Alarmelu Mangai

	Department of Mathematics					II M.Sc.		
Sem	Category	Course Code	Course Title	Credits	Contact	CIA	SE	Total
					Hours/week			
IV	SEC	230PMASEC4	Mathematics	2	4	25	75	100
			for CSIR-UGC					
			NET/GATE/SET					
			Competitive Examinations					

Nature of the Course				
Knowledge and Skill Oriented	Employability Oriented	Entrepreneurship oriented		

Course Objectives:

- To facilitate the students to crack National Level Examinations like CSIR- UGC NET/GATE/IIT-JAM/NBHM/TIFR/SLET etc.
- To prepare students for facing Competitive Examinations like UPSC/TNPSC

Course Content

Unit	Course Content	Hours	K Level	CLO
Ι	Algebra: Groups, cyclic groups, cayle's theorem,	12	Up to K4	CLO 1
	sylow's theorem, rings, ideals, UFD, PID,			
	polynomial ring and fields.			
II	Linear Algebra: Vector space, subspace, linear	12	Up to K4	CLO 2
	transformations, matrices, inner product space			
	and orthonormal basis.			
III	Real Analysis: countability, real number system,	12	Up to K4	CLO 3
	sequences, series, metric spaces, compactness,			
	connectedness, continuity, sequences & series			
	of functions, Riemann integral.			
IV	Topology: Basis, Dense sets, subspace and	12	Up to K5	CLO 4
	product topology, separation axioms,			
	connectedness and compactness.			
V	Complex Analysis: Complex numbers, power	12	Up to K5	CLO 5
	series, analytic functions ,Contour Integral			

Book for study:

Akhilesh Mani Tripathi and Sunil Kushwaha, "*CSIR-UGC NET Mathematical Sciences*" (UNIT-I & UNIT-II) Danika Publishing Company, Publishers of Trueman's Specific Series.

E.M.G.YADAVA WOMEN'S COLLEGE, MADURAI-14.

Books for Reference:

- 1. Advanced CSIR-NET/JRF/Mathematics By Dr.Gajendra Purohit Invincible Publishers.
- 2. CSIR-NET/JRF Mathematics Previous Years Solved Papers Volume I Pure Mathematics, Fifth Edition by Rajendra Dubey, Kittu Rani Publications pvt Ltd.

Web Resources:

- 1. http://pkalika.in/2019/10/14/study-material/
- 2.https://toppersnotes.com/csir-net-toppers-handwritten-notes-mathematical-science-samples/
- 3. https://www.csirhrdg.res.in/old_website/gp.pdf

Pedagogy:

Chalk and Talk, Powerpoint presentations, Group Discussions, Quiz, Assignment and Seminar.

Rationale for nature of Course:

Knowledge and Skill:

Knowledge, Problem Solving, Analytical ability, Professional Competency, Professional Communication and Transferrable Skill

Activities to be given:

We will be providing students with intellectual problems, theory application problems, group discussion and other practical works and also insist them to check the Books for References and web resources.

Course Learning Outcome (CLOs)

On completion of the course, behind the students would be able to:

COs	Course Outcomes	
CO1	Analyze and evaluate local properties of analytical functions and definite	Up to K4
	integrals.	
CO2	Describe the concept of definite integral and harmonic functions.	Up to K4
CO3	Demonstrate the concept of the general form of Cauchy's theorem	Up to K4
CO4	Develop Taylor and Laurent series .	Up to K5
CO5	Explain the infinite products, canonical products and Jensen's formula .	Up to K5

K1- Remembering facts with specific answers.

K2- Basic understanding of facts.

K3- Application oriented -Solving Problems.

K4- Analyzing, examining and making presentations with evidence.

K5- Evaluating, making Judgments based on criteria.

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6
CLO1	3	2	3	1	3	3
CLO2	3	1	3	2	3	3
CLO3	2	1	3	1	3	3
CLO4	3	2	3	1	3	3
CLO5	1	2	3	2	3	3

1.Basic level

2. Intermediate level

3. Advanced level

Lesson plan:

Unit	Description	Hours	Total	Mode
			Hours	
I	Algebra: Groups, cyclic groups, cayle's theorem, sylow's theorem	6	12	Chalk & Talk
	Rings, ideals, UFD, PID, polynomial ring and fields.	6		
II	Linear Algebra: Vector space, subspace, linear transformations	6	12	Chalk & Talk
	Matrices, inner product space and orthonormal basis.	6		
III	Real Analysis: countability, real number system, sequences, series, metric spaces	5	12	PowerPoint Presentation & Seminar
	Compactness, connectedness, continuity, sequences & series of functions, Riemann integral.	7		
IV	Topology: Basis, Dense sets, subspace and product topology	7	12	PowerPoint Presentation, Seminar
	Separation axioms, connectedness and compactness.	5		Assignment
V	Complex Analysis: Complex numbers, power series Analytic functions, complex integration.	6	12	PowerPoint Presentation & Seminar
		6 Total	60	Semma
L			I	

Course Designer:Mrs.N.Uma Maheswari